Computer Science
Vol 9 No 1 (2024): June
Application of Data Mining Using the Support Vector Machine (SVM) Method to Analyze Fashion Retail Products to Determine Trends
Penerapan Data Mining Dengan Menggunakan Metode Support Vector Machine (SVM) Untuk Menganalisa Produk Fashion Retail Untuk Menentukan Tren
Universitas Muhammadiyah Sidoarjo, Indonesia
*
(*) Corresponding Author
Abstract
This study addresses the escalating volume of research by proposing an efficient research storage system through data mining-based categorization. Employing the Support Vector Machine (SVM) method on a dataset comprising 541,910 retail product purchases, the research achieves a significant 96.2% accuracy in categorization using the cross-entropy loss function. The SVM method proves instrumental in systematically organizing research based on fields, methods, and outcomes, showcasing its efficacy in large-scale research storage and organization. This study highlights the SVM's potential as a vital tool for governments and private organizations to enhance access and utilization of research information. The results underscore the positive impact of SVM in overcoming the complexity of research storage on a broader scale, contributing to the advancement of efficient research management systems.
Highlights:
-
Efficient SVM Data Management: Proposes SVM-based data mining for effective research information storage.
-
96.2% Accuracy in Categorization: SVM with cross entropy achieves high accuracy in classifying research data.
-
Organized Access for Better Utilization: SVM organizes research systematically, enhancing accessibility and utilization for government and private sectors.
Keywords: Support Vector Machine, Data Mining, Dataset, Retail.
References
- G. Darussalam and A. G. Arief, "Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian," Resti, vol. 1, no. 1, pp. 19–25, 2017.
- R. Takdirillah, "Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan," Edumatic Journal Pendidikan Informatika, vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.
- A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliyansyah, "Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi (Analysis and Application of Algorithm Support Vector Machine (SVM) in Data Mining to Support Promotional Strategies)," JUITA Journal of Informatics, vol. 7, no. 2, pp. 71–79, 2019.
- R. R. Fiska, "Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera)," SATIN - Sains dan Teknologi Informasi, vol. 3, no. 1, pp. 15–23, 2017, doi: 10.33372/stn.v3i1.200.
- I. A. Ashari, A. Wirasto, and D. N. Triwibowo, "Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail Implementation of Market Basket Analysis with Apriori Algorithm for Retail Business Income Analysis," vol. 21, no. 3, 2022, doi: 10.30812/matrik.v21i3.1439.
- N. Anwar, F. Adikara, R. Setiyati, R. Satria, and A. Satriawan, "Data Mining Menggunakan Metode Algoritma Apriori Pada Vending Machine Product Display," JBASE - Journal of Business Audit and Information Systems, vol. 4, no. 2, pp. 23–31, 2021, doi: 10.30813/jbase.v4i2.3004.
- J. Jtik et al., "Analisis Sentimen pada Komen Twitter Pawang Hujan Mandalika dengan Support Vector Machine (SVM) dan Naïve Bayes," vol. 7, no. 2, pp. 0–6, 2023.
- J. G. Susanto and S. Budi, "Penerapan Data Science Pada Dataset Pokemon," vol. 4, no. November, pp. 243–254, 2022.
- M. Pratama Putra, M. Ariandi, M. Bina Darma, and D. Bina Darma, "Penerapan Data Mining Untuk Memprediksi Tingkat Ketepatan Jumlah Penjualan Produk Air Mineral Pada Pt. Mars Lestari," pp. 20–33, 2022, [Online]. Available: http://eprints.binadarma.ac.id/16685/.
- A. Agung and A. Putri, "Penerapan Data Mining Untuk Mengestimasi Laju Data Mining Usage to Estimate Civil Growth in Denpasar," vol. 6, no. 1, pp. 37–44, 2023.
Downloads
Download data is not yet available.