Skip to main navigation menu Skip to main content Skip to site footer

Agriculture

Vol 9 No 2 (2024): December

Heat Stress in Iraq Slashes Dairy Cow Health and Milk Production
Stres Panas di Irak Pangkas Kesehatan Sapi Perah dan Produksi Susu



(*) Corresponding Author
DOI
https://doi.org/10.21070/acopen.9.2024.9158
Published
June 23, 2024

Abstract

This study examined the impact of heat stress on dairy cows in Iraq, categorizing them into Comfortable Zone (CZ), Mild Stress (MS), and High Stress (HS) based on the Thermal Humidity Index (THI). Over 90 days, cows were monitored for physiological, hematological, biochemical, and milk production parameters. Results showed that as heat stress increased, cows exhibited higher respiration, heart, and pulse rates, and rectal and skin temperatures. Hemoglobin and packed cell volume decreased, while red blood cell count and other related measures increased. Biochemical analyses revealed higher levels of cortisol, blood urea nitrogen, total protein, and liver enzymes, with reduced albumin. Milk yield and quality significantly declined under HS conditions. These findings highlight the need for effective heat stress mitigation to protect cow health and dairy productivity in hot climates.

Highlights:

 

  1. Heat Stress Impact: Increased respiration, heart, pulse rates, and rectal and skin temperatures.
  2. Blood Changes: Lower hemoglobin, higher cortisol, blood urea nitrogen, liver enzymes.
  3. Milk Production: Reduced yield, fat content, and protein content under high stress.

 

Keywords: heat stress, dairy cows, physiology, milk production, Iraq

References

  1. C. Ahlgrim, P. Birkner, F. Seiler, N. Wrobel, S. Grundmann, C. Bode, and T. Pottgiesser, "Increased Red Cell Volume is a Relevant Contributing Factor to an Expanded Blood Volume in Compensated Systolic Chronic Heart Failure," J. Card. Fail., vol. 26, no. 5, pp. 420-428, 2020.
  2. A. Albillos, R. Martin-Mateos, S. Van der Merwe, R. Wiest, R. Jalan, and M. Álvarez-Mon, "Cirrhosis-Associated Immune Dysfunction," Nat. Rev. Gastroenterol. Hepatol., vol. 19, no. 2, pp. 112-134, 2022.
  3. T. Balabel, A. A. Sabek, and G. Radwan, "Evaluation of Some Hemato-Biochemical Parameters and Growth Performance of Friesian Calves During Suckling Period Under Egyptian Conditions," Egypt. J. Vet. Sci., vol. 54, no. 7, pp. 125-130, 2023.
  4. P. S. Baruselli, R. M. Ferreira, L. M. Vieira, A. H. Souza, G. A. Bó, and C. A. Rodrigues, "Use of Embryo Transfer to Alleviate Infertility Caused by Heat Stress," Theriogenology, vol. 155, pp. 1-11, 2020.
  5. S. Berian, S. Gupta, S. Sharma, I. Ganai, S. Dua, and N. Sharma, "Effect of Heat Stress on Physiological and Hemato-Biochemical Profile of Cross Bred Dairy Cattle," J. Anim. Res., vol. 9, no. 1, pp. 95-101, 2019.
  6. W. Burhans, C. R. Burhans, and L. Baumgard, "Invited Review: Lethal Heat Stress: The Putative Pathophysiology of a Deadly Disorder in Dairy Cattle," J. Dairy Sci., vol. 105, no. 5, pp. 3716-3735, 2022.
  7. S. L. Cartwright, J. Schmied, N. Karrow, and B. A. Mallard, "Impact of Heat Stress on Dairy Cattle and Selection Strategies for Thermotolerance: A Review," Front. Vet. Sci., vol. 10, p. 1198697, 2023.
  8. S. S. Chauhan, V. P. Rashamol, M. Bagath, V. Sejian, and F. R. Dunshea, "Impacts of Heat Stress on Immune Responses and Oxidative Stress in Farm Animals and Nutritional Strategies for Amelioration," Int. J. Biometeorol., vol. 65, no. 7, pp. 1231-1244, 2021.
  9. S. Chen, Y. Yong, and X. Ju, "Effect of Heat Stress on Growth and Production Performance of Livestock and Poultry: Mechanism to Prevention," J. Therm. Biol., vol. 99, p. 103019, 2021.
  10. M. N. Cramer, D. Gagnon, O. Laitano, and C. G. Crandall, "Human Temperature Regulation Under Heat Stress in Health, Disease, and Injury," Physiol. Rev., 2022.
  11. G. E. Dahl, S. Tao, and J. Laporta, "Heat Stress Impacts Immune Status in Cows Across the Life Cycle," Front. Vet. Sci., vol. 7, p. 116, 2020.
  12. T. F. Fabris, J. Laporta, A. L. Skibiel, F. N. Corra, B. D. Senn, S. E. Wohlgemuth, and G. E. Dahl, "Effect of Heat Stress During Early, Late, and Entire Dry Period on Dairy Cattle," J. Dairy Sci., vol. 102, no. 6, pp. 5647-5656, 2019.
  13. A. G. Godswill, I. V. Somtochukwu, A. O. Ikechukwu, and E. C. Kate, "Health Benefits of Micronutrients (Vitamins and Minerals) and Their Associated Deficiency Diseases: A Systematic Review," Int. J. Food Sci., vol. 3, no. 1, pp. 1-32, 2020.
  14. S. Gupta, A. Sharma, A. Joy, F. R. Dunshea, and S. S. Chauhan, "The Impact of Heat Stress on Immune Status of Dairy Cattle and Strategies to Ameliorate the Negative Effects," Animals, vol. 13, no. 1, p. 107, 2022.
  15. V. Habimana, A. S. Nguluma, Z. C. Nziku, C. C. Ekine-Dzivenu, G. Morota, R. Mrode, and S. W. Chenyambuga, "Heat Stress Effects on Milk Yield Traits and Metabolites and Mitigation Strategies for Dairy Cattle Breeds Reared in Tropical and Sub-Tropical Countries," Front. Vet. Sci., vol. 10, p. 1121499, 2023.
  16. P. Herbut, G. Hoffmann, S. Angrecka, D. Godyń, F. M. C. Vieira, K. Adamczyk, and R. Kupczyński, "The Effects of Heat Stress on the Behaviour of Dairy Cows–A Review," Ann. Anim. Sci., vol. 21, no. 2, pp. 385-402, 2021.
  17. M. Idris, J. Uddin, M. Sullivan, D. M. McNeill, and C. J. Phillips, "Non-Invasive Physiological Indicators of Heat Stress in Cattle," Animals, vol. 11, no. 1, p. 71, 2021.
  18. M. Joksimović-Todorović, V. Davidović, S. Hristov, and B. Stanković, "Effect of Heat Stress on Milk Production in Dairy Cows," Biotechnol. Anim. Husb., vol. 27, no. 3, pp. 1017-1023, 2011.
  19. R. Katoch, Techniques in Forage Quality Analysis, Springer Nature, 2022.
  20. H. Kaur, G. Kaur, T. Gupta, D. Mittal, and S. A. Ali, "Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production," Biology, vol. 12, no. 9, p. 1200, 2023.
  21. J. Y. Kim, J. T. Park, H. W. Kim, T. I. Chang, E. W. Kang, C. Ahn, K. H. Oh, J. Lee, W. Chung, and Y. S. Kim, "Inflammation Alters Relationship Between High-Density Lipoprotein Cholesterol and Cardiovascular Risk in Patients With Chronic Kidney Disease: Results From KNOW-CKD," J. Am. Heart Assoc., vol. 10, no. 16, p. e021731, 2021.
  22. G. Lardy and V. L. Anderson, "Alternative Feeds for Ruminants," 2009.
  23. A. J. Lengi, J. W. Stewart, M. Makris, M. L. Rhoads, and B. A. Corl, "Heat Stress Increases Mammary Epithelial Cells and Reduces Viable Immune Cells in Milk of Dairy Cows," Animals, vol. 12, no. 20, p. 2810, 2022.
  24. Z.-L. Liang, F. Chen, S. Park, B. Balasubramanian, and W.-C. Liu, "Impacts of Heat Stress on Rabbit Immune Function, Endocrine, Blood Biochemical Changes, Antioxidant Capacity and Production Performance, and the Potential Mitigation Strategies of Nutritional Intervention," Front. Vet. Sci., vol. 9, p. 906084, 2022.
  25. D. Lovarelli, J. Bacenetti, and M. Guarino, "A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production?" J. Clean. Prod., vol. 262, p. 121409, 2020.
  26. C. M. McManus, C. M. Lucci, A. Q. Maranhão, D. Pimentel, F. Pimentel, and S. R. Paiva, "Response to Heat Stress for Small Ruminants: Physiological and Genetic Aspects," Livest. Sci., vol. 263, p. 105028, 2022.
  27. S. McNamara, F. P. O’Mara, M. Rath, and J. J. Murphy, "Effects of Different Transition Diets on Dry Matter Intake, Milk Production, and Milk Composition in Dairy Cows," J. Dairy Sci., vol. 86, no. 7, pp. 2397-2408, 2003.
  28. B. Nabi, S. Gupta, and M. Rasool, "Hemato-Biochemical, Antioxidant Alteration in Thermal Stressed Cross-Bred Cows and Mitigation Using Micronutrients in Sub-Tropical Zone of India," Indian J. Anim. Res., vol. 1, p. 9, 2020.
  29. O. Oke, V. Uyanga, O. Iyasere, F. Oke, B. Majekodunmi, M. Logunleko, J. Abiona, E. Nwosu, M. Abioja, and J. Daramola, "Environmental Stress and Livestock Productivity in Hot-Humid Tropics: Alleviation and Future Perspectives," J. Therm. Biol., vol. 100, p. 103077, 2021.
  30. L. Pellegrino, F. Marangoni, G. Muscogiuri, P. D’Incecco, G. T. Duval, C. Annweiler, and A. Colao, "Vitamin D Fortification of Consumption Cow’s Milk: Health, Nutritional and Technological Aspects. A Multidisciplinary Lecture of the Recent Scientific Evidence," Molecules, vol. 26, no. 17, p. 5289, 2021.
  31. J. D. Périard, T. M. Eijsvogels, and H. A. Daanen, "Exercise Under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies," Physiol. Rev., 2021.
  32. M. A. Puerto, E. Shepley, R. I. Cue, D. Warner, J. Dubuc, and E. Vasseur, "The Hidden Cost of Disease: I. Impact of the First Incidence of Mastitis on Production and Economic Indicators of Primiparous Dairy Cows," J. Dairy Sci., vol. 104, no. 7, pp. 7932-7943, 2021.
  33. T. Ran, S. Tang, X. Yu, Z. Hou, F. Hou, K. Beauchemin, W. Yang, and D. Wu, "Diets Varying in Ratio of Sweet Sorghum Silage to Corn Silage for Lactating Dairy Cows: Feed Intake, Milk Production, Blood Biochemistry, Ruminal Fermentation, and Ruminal Microbial Community," J. Dairy Sci., vol. 104, no. 12, pp. 12600-12615, 2021.
  34. A. Rozhkova and J. Olentsova, "Development of the Dairy Industry in the Region," IOP Conf. Ser.: Earth Environ. Sci., 2020.
  35. A. Sammad, S. Umer, R. Shi, H. Zhu, X. Zhao, and Y. Wang, "Dairy Cow Reproduction Under the Influence of Heat Stress," J. Anim. Physiol. Anim. Nutr., vol. 104, no. 4, pp. 978-986, 2020.
  36. A. Sammad, Y. J. Wang, S. Umer, H. Lirong, I. Khan, A. Khan, B. Ahmad, and Y. Wang, "Nutritional Physiology and Biochemistry of Dairy Cattle Under the Influence of Heat Stress: Consequences and Opportunities," Animals, vol. 10, no. 5, p. 793, 2020.
  37. V. Sejian, M. V. Silpa, M. R. Reshma Nair, C. Devaraj, G. Krishnan, M. Bagath, S. S. Chauhan, R. U. Suganthi, V. F. Fonseca, and S. König, "Heat Stress and Goat Welfare: Adaptation and Production Considerations," Animals, vol. 11, no. 4, p. 1021, 2021.
  38. S. H. Siddiqui, M. Khan, D. Kang, H. W. Choi, and K. Shim, "Meta-Analysis and Systematic Review of the Thermal Stress Response: Gallus Gallus Domesticus Show Low Immune Responses During Heat Stress," Front. Physiol., vol. 13, p. 809648, 2022.
  39. M. V. Silpa, S. König, V. Sejian, P. K. Malik, M. R. R. Nair, V. F. Fonseca, A. S. C. Maia, and R. Bhatta, "Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models," Front. Vet. Sci., vol. 8, p. 625189, 2021.
  40. S. Tao, R. M. Orellana, T. N. Weng, Y.-C. Marins, J. Gao, and J. K. Bernard, "Symposium Review: The Influences of Heat Stress on Bovine Mammary Gland Function," J. Dairy Sci., vol. 101, no. 6, pp. 5642-5654, 2018.
  41. S. Tao, R. M. Orellana, T. N. Marins, Y.-C. Chen, J. Gao, and J. K. Bernard, "Impact of Heat Stress on Lactational Performance of Dairy Cows," Theriogenology, vol. 150, pp. 437-444, 2020.
  42. M. F. Te Pas, T. Veldkamp, Y. de Haas, A. Bannink, and E. D. Ellen, "Adaptation of Livestock to New Diets Using Feed Components Without Competition With Human Edible Protein Sources—A Review of the Possibilities and Recommendations," Animals, vol. 11, no. 8, p. 2293, 2021.
  43. P. Thornton, G. Nelson, D. Mayberry, and M. Herrero, "Impacts of Heat Stress on Global Cattle Production During the 21st Century: A Modelling Study," Lancet Planet. Health, vol. 6, no. 3, pp. e192-e201, 2022.
  44. A. K. Wankar, S. N. Rindhe, and N. S. Doijad, "Heat Stress in Dairy Animals and Current Milk Production Trends, Economics, and Future Perspectives: The Global Scenario," Trop. Anim. Health Prod., vol. 53, no. 1, p. 70, 2021.
  45. X. Zhang, Y. Jia, Z. Yuan, Y. Wen, Y. Zhang, J. Ren, P. Ji, W. Yao, Y. Hua, and Y. Wei, "Sheng Mai San Ameliorated Heat Stress-Induced Liver Injury via Regulating Energy Metabolism and AMPK/Drp1-Dependent Autophagy Process," Phytomedicine, vol. 97, p. 153920, 2022.
  46. M. Zhou, A. Aarnink, T. Huynh, I. Van Dixhoorn, and P. G. Koerkamp, "Effects of Increasing Air Temperature on Physiological and Productive Responses of Dairy Cows at Different Relative Humidity and Air Velocity Levels," J. Dairy Sci., vol. 105, no. 2, pp. 1701-1716, 2022.

Downloads

Download data is not yet available.