Skip to main navigation menu Skip to main content Skip to site footer

Medicine

Vol 9 No 2 (2024): December

Elevated CRP and IL6 Levels Predict Severe Cardiovascular Outcomes in COVID-19 Patients
Peningkatan Kadar CRP dan IL6 Memprediksi Hasil Kardiovaskular yang Parah pada Pasien COVID-19



(*) Corresponding Author
DOI
https://doi.org/10.21070/acopen.9.2024.8996
Published
May 17, 2024

Abstract

This study explores the association between C-reactive protein (CRP) and interleukin 6 (IL-6) levels and cardiovascular complications in COVID-19 patients. Utilizing an ELISA kit for IL-6 and standard tests for CRP, we analyzed 192 samples, finding higher infection rates among the 50-69 age group, with significant prevalence of morbid obesity. Results showed a strong correlation between elevated CRP and IL-6 levels and the severity of cardiovascular complications, particularly in critical cases. These findings suggest that monitoring these biomarkers could be crucial for early intervention and managing cardiovascular risks in COVID-19 patients, potentially improving patient outcomes in clinical settings.

Highlights:

  • Biomarker Correlation: Elevated CRP and IL-6 levels are linked to severe cardiovascular complications in COVID-19 patients.
  • Risk Management: Monitoring these biomarkers helps in early intervention and managing cardiovascular risks.
  • Demographic Insights: The highest infection and complication rates are among the 50-69 age group with significant obesity.

Keywords: COVID-19, Cardiovascular Complications, CRP, IL-6, Biomarker Monitoring

References

  1. I. M. Artika, A. K. Dewantari, and A. Wiyatno, “Molecular biology of coronaviruses: current knowledge,” Heliyon, vol. 6, no. 8, p. e04743, 2020, doi: 10.1016/j.heliyon.2020.e04743.
  2. M. G. Hossain, A. Javed, S. Akter, and S. Saha, “SARS-CoV-2 host diversity: An update of natural infections and experimental evidence,” J. Microbiol. Immunol. Infect., vol. 54, no. 2, pp. 175–181, 2021, doi: 10.1016/j.jmii.2020.06.006.
  3. B. Grubišić et al., “Molecular Mechanisms Responsible for Diabetogenic Effects of COVID-19 Infection—Induction of Autoimmune Dysregulation and Metabolic Disturbances,” Int. J. Mol. Sci., vol. 24, no. 14, 2023, doi: 10.3390/ijms241411576.
  4. K. Tyagi et al., “Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders,” Eur. J. Med. Res., vol. 28, no. 1, pp. 1–25, 2023, doi: 10.1186/s40001-023-01293-2.
  5. N. Vishwakarma, R. B. Goud, M. P. Tirupattur, and L. C. Katwa, “The Eye of the Storm: Investigating the Long-Term Cardiovascular Effects of COVID-19 and Variants,” Cells, vol. 12, no. 17, 2023, doi: 10.3390/cells12172154.
  6. V. H. Vu, T. C. Nguyen, Q. D. D. Pham, D. N. Pham, L. B. Le, and K. M. Le, “Prevalence and impact of myocardial injury among patients hospitalized with COVID-19,” Front. Cardiovasc. Med., vol. 10, no. August, pp. 1–10, 2023, doi: 10.3389/fcvm.2023.1202332.
  7. S. H. Tveit, P. L. Myhre, and T. Omland, “The clinical importance of high-sensitivity cardiac troponin measurements for risk prediction in non-cardiac surgery,” Expert Rev. Mol. Diagn., vol. 23, no. 6, pp. 535–544, 2023, doi: 10.1080/14737159.2023.2211267.
  8. E. Niculet et al., “Multifactorial expression of IL‑6 with update on COVID‑19 and the therapeutic strategies of its blockade (Review),” Exp. Ther. Med., vol. 21, no. 3, pp. 1–10, 2021, doi: 10.3892/etm.2021.9693.
  9. T. Kadhem and R. Salih, “Correlations of Interleukin-6 (IL-6) ( G174C and G572C ) gene polymorphisms and sera levels with risk of Coronary Artery Disease in Thi – Qar province,” Univ. Thi-Qar J. Sci., vol. 10, no. 1, 2023, doi: 10.32792/utq/utjsci/v10i1.923.
  10. B. Zaira, T. Yulianti, and J. Levita, “Correlation between Hepatocyte Growth Factor (HGF) with D-Dimer and Interleukin-6 as Prognostic Markers of Coagulation and Inflammation in Long COVID-19 Survivors,” Curr. Issues Mol. Biol., vol. 45, no. 7, pp. 5725–5740, 2023, doi: 10.3390/cimb45070361.
  11. M. K. Oudha, “Effect of different COVID-19 vaccines on some biomarkers in diabetics,” Univ. Thi-Qar J. Sci., vol. 1, no. 1, pp. 127–131, 2023.
  12. Y. J. Su, K. C. Kuo, T. W. Wang, and C. W. Chang, “Gender-based differences in COVID-19,” New Microbes New Infect., vol. 42, pp. 1–6, 2021, doi: 10.1016/j.nmni.2021.100905.
  13. A. Al-Rubaye, Z. Al-Hashim, M. Mohammed, and O. Habib, “A Study on 696 COVID-19 Cases in Basrah-Southern Iraq: Severity and Outcome Indicators,” Iraqi Natl. J. Med., vol. 2, no. CSI, pp. 19–26, 2020, doi: 10.37319/iqnjm.2.csi.3.
  14. S. Mukherjee and K. Pahan, “Is COVID-19 Gender-sensitive?,” J. Neuroimmune Pharmacol., vol. 16, no. 3, pp. 38–47, 2021.
  15. A. Pradhan and P. E. Olsson, “Sex differences in severity and mortality from COVID-19: are males more vulnerable?,” Biol. Sex Differ., vol. 11, no. 1, pp. 1–11, 2020, doi: 10.1186/s13293-020-00330-7.
  16. J. K. Achua et al., “Histopathology and ultrastructural findings of fatal COVID-19 infections on testis,” World J. Mens. Health, vol. 39, no. 1, pp. 65–74, 2020, doi: 10.5534/wjmh.200170.
  17. S. Xiong et al., “Clinical characteristics of 116 hospitalized patients with COVID-19 in Wuhan, China: a single-centered, retrospective, observational study,” BMC Infect. Dis., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12879-020-05452-2.
  18. Y. Wang, F. Sibaii, K. Lee, M. J. Gill, and J. L. Hatch, “NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1,” medRxiv, vol. 1, no. 165, pp. 1–13, 2021.
  19. N. G. Davies et al., “Age-dependent effects in the transmission and control of COVID-19 epidemics,” Nat. Med., vol. 26, no. 8, pp. 1205–1211, 2020, doi: 10.1038/s41591-020-0962-9.
  20. A. L. Mueller, M. S. Mcnamara, and D. A. Sinclair, “Why does COVID-19 disproportionately affect older people?,” Aging (Albany. NY)., vol. 12, no. 10, pp. 9959–9981, 2020, doi: 10.18632/aging.103344.
  21. R. Pranata et al., “Body mass index and outcome in patients with COVID-19: A dose–response meta-analysis,” Diabetes Metab., vol. 47, no. 2, p. 101178, 2021, doi: 10.1016/j.diabet.2020.07.005.
  22. D. Khanna, S. Khanna, P. Khanna, P. Kahar, and B. M. Patel, “Obesity: A Chronic Low-Grade Inflammation and Its Markers,” Cureus, vol. 14, no. 2, 2022, doi: 10.7759/cureus.22711.
  23. D. J. Moreno Fernández-Ayala, P. Navas, and G. López-Lluch, “Age-related mitochondrial dysfunction as a key factor in COVID-19 disease,” Exp. Gerontol., vol. 142, no. November, 2020, doi: 10.1016/j.exger.2020.111147.
  24. S. M. M. Aghili et al., “Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis,” Int. J. Obes., vol. 45, no. 5, pp. 998–1016, 2021, doi: 10.1038/s41366-021-00776-8.
  25. S. T. Selvavinayagam et al., “Low SARS-CoV- viral load among vaccinated individuals infected with Delta B . . but not with Omicron BA . . and BA .,” Forntiers Public Heal., vol. 20, no. 9, pp. 1–14, 2022.
  26. M. Bansal, “Cardiovascular disease and COVID-19,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 3, pp. 247–250, 2020, doi: 10.1016/j.dsx.2020.03.013.
  27. A. Schmid, M. Petrovic, K. Akella, A. Pareddy, and S. S. Velavan, “Getting to the Heart of the Matter: Myocardial Injury, Coagulopathy, and Other Potential Cardiovascular Implications of COVID-19,” Int. J. Vasc. Med., vol. 2021, no. 2020, 2021, doi: 10.1155/2021/6693895.
  28. S. Pujhari, S. Paul, J. Ahluwalia, and J. L. Rasgon, “Clotting disorder in severe acute respiratory syndrome coronavirus 2,” Rev. Med. Virol., vol. 31, no. 3, pp. 1–5, 2021, doi: 10.1002/rmv.2177.
  29. M. Levi and T. Iba, “COVID-19 coagulopathy: is it disseminated intravascular coagulation?,” Intern. Emerg. Med., vol. 16, no. 2, pp. 309–312, 2021, doi: 10.1007/s11739-020-02601-y.
  30. P. Tandon et al., “Unraveling Links between Chronic Inflammation and Long COVID: Workshop Report,” J. Immunol., vol. 212, no. 4, pp. 505–512, 2024, doi: 10.4049/jimmunol.2300804.
  31. Y. Wang et al., “Cardiac arrhythmias in patients with COVID-19,” J. Arrhythmia, vol. 36, no. 5, pp. 827–836, 2020, doi: 10.1002/joa3.12405.
  32. L. Yu, Y. Liu, and Y. Feng, “Cardiac arrhythmia in COVID-19 patients,” Ann. Noninvasive Electrocardiol., vol. 29, no. 2, pp. 1–8, 2024, doi: 10.1111/anec.13105.
  33. C. : José et al., “Arrhythmia in COVID-19 Savalan,” Front. Pharmacol., vol. 11, no. 1, pp. 1–13, 2021, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105320113&doi=10.1016%2Fj.amjmed.2021.01.011&partnerID=40&md5=7bf1b4a359e5b2e8213d9fbc457fa4e0%0Ahttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85104587242&doi=10.1016%2Fj.chest.2020.11.017&partnerI
  34. S. H. Yoon, H. L. Lee, D. U. Jeong, K. M. Lim, S. J. Park, and K. S. Kim, “Assessment of the proarrhythmic effects of repurposed antimalarials for COVID-19 treatment using a comprehensive in vitro proarrhythmia assay (CiPA),” Front. Pharmacol., vol. 14, no. August, pp. 1–14, 2023, doi: 10.3389/fphar.2023.1220796.
  35. N. G. Kounis et al., “‘When,’ ‘Where,’ and ‘How’ of SARS-CoV-2 Infection Affects the Human Cardiovascular System: A Narrative Review,” Balkan Med. J., vol. 41, no. 1, pp. 7–22, 2024, doi: 10.4274/balkanmedj.galenos.2023.2023-10-25.
  36. H. M. R. van Goor, K. van Loon, M. J. M. Breteler, C. J. Kalkman, and K. A. H. Kaasjager, “Circadian patterns of heart rate, respiratory rate and skin temperature in hospitalized COVID-19 patients,” PLoS One, vol. 17, no. 7 July, pp. 1–14, 2022, doi: 10.1371/journal.pone.0268065.
  37. J. Shekhawat et al., “Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm,” Indian J. Clin. Biochem., vol. 36, no. 4, pp. 440–450, 2021, doi: 10.1007/s12291-021-00989-8.
  38. J. Zhu et al., “Elevated interleukin-6 is associated with severity of COVID-19: A meta-analysis,” J. Med. Virol., vol. 93, no. 1, pp. 35–37, 2021, doi: 10.1002/jmv.26085.
  39. Z. Liu et al., “Dynamic Interleukin-6 Level Changes as a Prognostic Indicator in Patients With COVID-19,” Front. Pharmacol., vol. 11, no. July, pp. 1–11, 2020, doi: 10.3389/fphar.2020.01093.
  40. N. Nguyen et al., “Relation of interleukin-6 levels in COVID-19 patients with major adverse cardiac events,” Baylor Univ. Med. Cent. Proc., vol. 35, no. 1, pp. 6–9, 2022, doi: 10.1080/08998280.2021.1961571.
  41. H. Liu et al., “Association of interleukin-6, ferritin, and lactate dehydrogenase with venous thromboembolism in COVID-19: a systematic review and meta-analysis,” BMC Infect. Dis., vol. 24, no. 1, pp. 1–13, 2024, doi: 10.1186/s12879-024-09205-3.
  42. A. Hosseini et al., “Innate and adaptive immune responses against coronavirus,” Biomed. Pharmacother., vol. 132, p. 110859, 2020, doi: 10.1016/j.biopha.2020.110859.
  43. C. Zhang, Z. Wu, J. W. Li, H. Zhao, and G. Q. Wang, “Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality,” Int. J. Antimicrob. Agents, vol. 55, no. 5, 2020, doi: 10.1016/j.ijantimicag.2020.105954.
  44. J. Stanimirovic et al., “Role of C-Reactive Protein in Diabetic Inflammation,” Mediators Inflamm., vol. 2022, 2022, doi: 10.1155/2022/3706508.
  45. W. Chen, K. I. Zheng, S. Liu, Z. Yan, C. Xu, and Z. Qiao, “Plasma CRP level is positively associated with the severity of COVID-19,” Ann. Clin. Microbiol. Antimicrob., vol. 19, pp. 1–7, 2020, doi: 10.1186/s12941-020-00362-2.
  46. P. Theofilis et al., “Inflammatory mechanisms contributing to endothelial dysfunction,” Biomedicines, vol. 9, no. 7, pp. 1–21, 2021, doi: 10.3390/biomedicines9070781.
  47. I. Melnikov, S. Kozlov, O. Saburova, Y. Avtaeva, K. Guria, and Z. Gabbasov, “Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives,” Int. J. Mol. Sci., vol. 24, no. 3, 2023, doi: 10.3390/ijms24032079.
  48. M. Wang, J. Feng, D. Zhou, and J. Wang, “Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis,” Eur. J. Med. Res., vol. 28, no. 1, pp. 1–16, 2023, doi: 10.1186/s40001-023-01301-5.

Downloads

Download data is not yet available.