Skip to main navigation menu Skip to main content Skip to site footer

Engineering

Vol 8 No 2 (2023): December

The Effect of Alkalization on the Mechanical Properties of Sansevieria Fiber Bio-Composit
Pengaruh Alkali Basa Terhadap Sifat Mekanik Bio-Komposit Serat Sansevieria



(*) Corresponding Author
DOI
https://doi.org/10.21070/acopen.8.2023.7237
Published
August 14, 2023

Abstract

Alkali treatment of natural fibers has a role in removing hemicellulose and lignin layers. This layer prevents the matrix from bonding with the natural fiber cellulose structure. The use of an inappropriate type of alkali will reduce its effectiveness and can even damage the cellulose layer. This study compared the effectiveness of alkaline NaOH, CaOH and KOH in removing lignin and hemicellulose and their ability to maintain cellulose content. The use of the immersion method in alkaline solutions is well controlled. The FTIR characterization test was used to detect functional group changes, the TGV test to detect heat resistance ability, the XRD test to detect structural changes in crystalline and amorphous properties of sansevieria natural fibers. Furthermore, the tensile test to determine the effect of alkaline treatment on changes in mechanical strength Tensile strength. From the test results it was found that the alkaline NaOH gave the best characteristics by detecting the presence of cellulose, tensile strength and the nature of the crystalline atomic structure.

Highlights: 

  • Effectiveness of Alkali Types: Comparison of NaOH, CaOH, and KOH effectiveness in removing lignin and hemicellulose while preserving cellulose content.
  • Characterization Techniques: FTIR, TGA, and XRD tests used for functional group changes, heat resistance, and structural properties evaluation.
  • NaOH Superiority: Alkaline NaOH treatment demonstrated best results in maintaining cellulose, enhancing tensile strength, and influencing atomic structure.

Keywords: Alkali treatment, Natural fibers, Lignin removal, Cellulose preservation, Tensile strength.

References

  1. V. S. Sreenivasan, N. Rajini, A. Alavudeen, and V. Arumugaprabu, “Dynamic mechanical and thermogravimetric analysis of Sansevieria cylindrica / polyester composite : Effect of fiber length , fiber loading and chemical treatment,” Compos. Part B, vol. 69, pp. 76–86, 2015, doi: 10.1016/j.compositesb.2014.09.025.
  2. R. B. Ashok, C. V. Srinivasa, and B. Basavaraju, “Dynamic mechanical properties of natural fiber composites— a review,” Adv. Compos. Hybrid Mater., vol. 2, no. 4, pp. 586–607, 2019, doi: 10.1007/s42114-019-00121-8.
  3. V. S. Sreenivasan, D. Ravindran, V. Manikandan, and R. Narayanasamy, “Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica / polyester composites,” J. Mater., vol. 37, pp. 111–121, 2012, doi: 10.1016/j.matdes.2012.01.004.
  4. K. Ramanaiah, A. V. R. Prasad, and K. H. Chandra, “Materia ls and Design Mechanical , thermophysical and fire properties of sansevieria fiber-reinforced polyester composites,” Mater. Des., vol. 49, pp. 986–991, 2013, doi: 10.1016/j.matdes.2013.02.056.
  5. V. S. Sreenivasan, S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy, “Microstructural , physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation,” Mater. Des., vol. 32, no. 1, pp. 453–461, 2011, doi: 10.1016/j.matdes.2010.06.004.
  6. A. L. Murabbi and F. T. Industri, “Pengaruh konsentrasi larutan garam terhadap laju korosi dengan metode polarisasi dan uji kekerasan serta uji tekuk pada plat bodi mobil,” J. Tek. POMITS, vol. 1, no. 1, pp. 1–5, 2012.
  7. M. Lassoued, T. Mnasri, A. Hidouri, and R. Ben Younes, “Thermomechanical behavior of Tunisian palm fibers before and after alkalization,” Constr. Build. Mater., vol. 170, pp. 121–128, 2018, doi: 10.1016/j.conbuildmat.2018.03.070.
  8. K. Bommanna and G. C. Shanthakumar, “Study of Sisal Fibre Attrition and Characterization during Direct Extrusion Compression Moulding,” in Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 13251–13257. doi:
  9. 1016/j.matpr.2018.02.316.
  10. D. Sung, D. Kim, J. Suriboot, M. A. Grunlan, and B. L. Tai, “Feasibility study of silicone stereolithography with an optically created dead zone,” Addit. Manuf., vol. 29, no. June, p. 100793, 2019, doi:
  11. 1016/j.addma.2019.100793.
  12. F. J. Aranda-García, R. González-Núñez, C. F. Jasso-Gastinel, and E. Mendizábal, “Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid)/Agave Bagasse Fiber Bioplastic Composites,” Int. J. Polym. Sci., vol. 2015, 2015, doi: 10.1155/2015/343294.
  13. F. J. Aranda-García et al., “Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid)/Agave Bagasse Fiber Bioplastic Composites,” Int. J. Polym. Sci., vol. 2018, 2018, doi: 10.1155/2015/343294.
  14. M. S. Mahzabin, L. J. Hock, M. S. Hossain, and L. S. Kang, “The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite,” Constr. Build. Mater., vol. 178, pp. 518– 528, 2018, doi: 10.1016/j.conbuildmat.2018.05.169.
  15. C. Gao, J. Yang, and L. Han, “Systematic comparison for effects of different scale mechanical-NaOH coupling treatments on lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw,” Bioresour. Technol., vol. 326, no. January, p. 124786, 2021, doi: 10.1016/j.biortech.2021.124786.

Downloads

Download data is not yet available.