Skip to main navigation menu Skip to main content Skip to site footer

Political science

Vol 8 No 1 (2023): June

Sentiment Analysis of Potential Presidential Candidates 2024: A Twitter-Based Study
Analisis Sentimen Calon Presiden Potensial 2024: Sebuah Studi Berbasis Twitter



(*) Corresponding Author
DOI
https://doi.org/10.21070/acopen.8.2023.7138
Published
August 4, 2023

Abstract

This study aims to analyze the sentiment towards potential presidential candidates for the 2024 election in Indonesia based on Twitter users' opinions. Three prominent figures, Ganjar Pranowo, Anies Baswedan, and Prabowo Subianto, were surveyed to gauge their electability. Using machine learning classification methods, Support Vector Machine, Bernoulli Naïve Bayes, and Logistic Regression, sentiment classification was performed. The findings indicate that Twitter users expressed predominantly positive sentiments towards each potential candidate. The evaluation of the classification algorithms showed SVM with 84% accuracy, Bernoulli Naïve Bayes with 77%, and Logistic Regression with 84%. This research sheds light on public sentiment towards potential leaders, offering valuable insights for political strategists and decision-makers in shaping effective election campaigns.

Highlight:

  • Sentiment Analysis: The study employs machine learning techniques to analyze the sentiments expressed by Twitter users towards potential presidential candidates for the 2024 election in Indonesia.
  • Positive Sentiments: The findings reveal that Twitter users predominantly exhibit positive sentiments towards all three potential candidates, Ganjar Pranowo, Anies Baswedan, and Prabowo Subianto.
  • Election Insights: This research provides valuable insights into public sentiment, offering valuable information for political strategists and decision-makers in devising effective election campaigns for the upcoming presidential election.

Keyword: Sentiment Analysis, Twitter Users, Potential Presidential Candidates, Machine Learning, Election 2024

References

  1. D. A. Vonega, A. Fadila, and D. E. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 129–135, 2022, doi: 10.30871/jaic.v6i2.4300.
  2. I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.
  3. G. Sanjaya and K. M. Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” vol. 7, no. 3, pp. 9698–9710, 2020.
  4. A. D. Akmal, I. Permana, H. Fajri, and Y. Yuliarti, “Opini Masyarakat Twitter terhadap Kandidat Bakal Calon Presiden Republik Indonesia Tahun 2024,” J. Manaj. dan Ilmu Adm. Publik, vol. 4, no. 4, pp. 292–300, 2022, doi: 10.24036/jmiap.v4i4.160.
  5. Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.
  6. W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
  7. M. Z. Anbari and B. Sugiantoro, “Studi Komparasi Metode Analisis Sentimen Naïve Bayes , SVM , dan Logistic Regression Pada Piala Dunia 2022,” vol. 7, no. April, pp. 688–695, 2023, doi: 10.30865/mib.v7i2.5383.
  8. N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,” J. Gaussian, vol. 9, no. 3, pp. 237–246, 2020, doi: 10.14710/j.gauss.v9i3.27963.
  9. Primi Rohimi, “SNA DENGAN NETLYTIC PADA KOLOM KOMENTAR VIDEO YOUTUBE GUS MIFTAH CERAMAH DI GEREJA,” vol. 1, no. 1, pp. 360–377, 2021, doi: 10.21154/dialogia.v15i2.1192.4.
  10. B. M. Pintoko and K. M. L, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier,” 2018.
  11. N. Putu, A. Widiari, I. M. Agus, D. Suarjaya, and D. P. Githa, “Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali,” vol. 8, no. 2, pp. 137–145, 2020.
  12. V. A. Flores and L. Jasa, “Analisis Sentimen untuk Mengetahui Kelemahan dan Kelebihan Pesaing Bisnis Rumah Makan Berdasarkan Komentar Positif dan Negatif di Instagram,” vol. 19, no. 1, 2020.
  13. D. W. Seno and A. Wibowo, “Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Berbasis Metode Lexicon Dan Support Vector Machine,” vol. XI, no. 2, pp. 144–155, 2019.
  14. I. T. Julianto, “Analisis Sentimen Terhadap Sistem Informasi Akademik Mahasiswa Institut Teknologi Garut,” pp. 458–465.
  15. A. Novantirani et al., “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” pp. 1–7, 2015.

Downloads

Download data is not yet available.