Skip to main navigation menu Skip to main content Skip to site footer


Vol 8 No 2 (2023): December

Calculating Thin Film Strain From XRD Data
Menghitung Regangan Film Tipis dari Data XRD

(*) Corresponding Author
July 14, 2023


This study aims to investigate the crystallite size and microstrain of Cu plate samples subjected to various hot water treatment times using the Williamson-Hall method and XRD profiles. The estimated crystallite sizes obtained from this method were compared with scanning electron microscope (SEM) observations, showing good agreement. The Williamson-Hall method was also utilized to determine microstrain, and the influence of temperature on the mechanical properties of copper was examined, highlighting the dominant role of dynamic softening mechanisms in copper deformation. Line broadening analysis was employed to compare crystallite size and microstrain, demonstrating the usefulness of the Williamson-Hall method in cases where both factors contribute to line broadening. The research underscores the reliability of the Williamson-Hall method in accurately determining crystallite size and microstrain from XRD line broadening analysis. The findings reveal that increasing treatment time leads to higher strain in thin films, and the calculated crystal size aligns well with reference measurements. This study provides valuable insights for designing and synthesizing copper-based materials with improved structural integrity and desired mechanical properties.


  • Accurate characterization: The Williamson-Hall method and XRD profiles are reliable techniques for determining crystallite size and microstrain in Cu plate samples, validated by comparison with SEM observations.
  • Temperature influence: Temperature plays a crucial role in the mechanical properties of copper, with dynamic softening mechanisms dominating the deformation behavior.
  • Line broadening analysis: Line broadening analysis allows for the comparison of crystallite size and microstrain, demonstrating the utility of the Williamson-Hall method in cases where both factors contribute to line broadening.



  1. N. Schäfer, A. J. Wilkinson, T. Schmid, et al., "Microstrain distribution mapping on CulnSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy," Ultramicroscopy, vol. 169, pp. 89-97, Oct. 2016.
  2. G. K. Williamson and W. H. Hall, "X-ray line broadening from filed aluminium and wolfram," Acta Metallurgica, vol. 1, no. 1, pp. 22-31, Jan. 1953.
  3. V. D. Mote, Y. Purushotham, and B. N. Dole, "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles," Journal of Theoretical and Applied Physics, 2012.
  4. Y. T. Prabhu, K. Venkateswara Rao, V. Sesha Sai Kumar, and B. Siva Kumari, "X-ray Analysis of Fe doped ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods," International Journal of Engineering and Advanced Technology (IJEAT), vol. 2, no. 4, pp. 876-879, Apr. 2013.
  5. P. M. Brandstetter, S. Van Petegem, and H. Van Swygenhoven, "Williamson-Hall anisotropy in nanocrystalline metals X-ray diffraction experiments and atomistic simulations," Acta Materialia, vol. 56, pp. 165-176, 2008.
  6. A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, and R. Yousefi, "X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods," Solid State Sciences, vol. 13, pp. 251-256, 2011.
  7. Y. T. Prabhu, K. Venkateswara Rao, V. Sesha Sai Kumar, and B. Siva Kumari, "X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO nanoparticles with fuel variation," Journal of Nano Science and Engineering, vol. 4, pp. 21-28, 2014.
  8. G. S. Thool, A. K. Singh, R. S. Singh, A. Gupta, and M. A. B. H. Susan, "Facile synthesis of flat crystal ZnO thin films by solution growth method: A microstructural investigation," Journal of Saudi Chemical Society, vol. 18, no. 5, pp. 712-721, Nov. 2014.
  9. H. Sarma and K. C. Sarma, "X-ray peak broadening analysis of ZnO nanoparticles derived by precipitation method," International Journal of Scientific and Research Publications, vol. 4, no. 3, pp. 1-5, Mar. 2014.
  10. M. F. Abdullah, "Formation And Characterization Of Cupper Oxide Nanostructures Prepared By Hot Deionized Water," Thesis, College of Science, University of Kirkuk, 2022.
  11. S. Liu, A. Wang, and J. Xie, "Effect Of Deformation Temperature, Strain Rate And Strain On The Strain Hardening Exponent Of Copper/Aluminum Laminated Composites," Advanced Composites Letters, vol. 27, no. 4, pp. 91-98, 2018.


Download data is not yet available.