Login
Section Medicine

The Antimicrobial Activity of Extracted Shiga Toxin from E. coli O157:H7 on Different Types of Bacteria and Fungi

Vol. 11 No. 1 (2026): June :

Khutheir Abbas Ali (1), Harith Basim Ibrahim Al-Nasiri (2), Ola Hassan AlSaady (3)

(1) Ministry of Education, Iraq
(2) Ministry of Education, Iraq
(3) Ministry of Education, Iraq
Fulltext View | Download

Abstract:

General Background: Shiga toxin–producing Escherichia coli O157:H7 is a major foodborne pathogen associated with severe human disease and increasing antimicrobial resistance. Specific Background: Bacterial toxins have gained attention as alternative antimicrobial agents, yet their activity depends strongly on effective purification and characterization. Knowledge Gap: Limited evidence is available regarding the antimicrobial spectrum of purified Shiga toxin against diverse bacterial and fungal pathogens isolated from food sources. Aims: This study aimed to isolate E. coli O157:H7 from dairy and meat products in Baghdad and to evaluate the antimicrobial activity of purified Shiga toxin. Results: Thirty E. coli O157:H7 isolates were obtained from 300 samples. Shiga toxin was successfully purified using ammonium sulfate precipitation, dialysis, and ion-exchange chromatography, and showed inhibitory activity against several pathogenic bacteria and Candida albicans, with the lowest MIC observed for the fungus. Novelty: The study demonstrates selective antimicrobial efficacy of purified Shiga toxin against both bacterial and fungal pathogens. Implications: These findings highlight the potential of bacterial toxins as candidate agents for controlling foodborne and multidrug-resistant microorganisms.


Keywords : Shiga Toxin, Escherichia coli O157:H7, Antimicrobial Activity, Ion-Exchange Chromatography, Foodborne Pathogens
Highlight :




  • Purified toxin showed strongest growth inhibition against Candida albicans at the lowest tested concentration.




  • Meat-derived samples exhibited higher contamination rates compared with dairy products.




  • Selective susceptibility was observed, with Klebsiella pneumoniae demonstrating marked sensitivity.



Downloads

Download data is not yet available.

References

J. M. Janda and S. L. Abbott, “The Changing Face of the Family Enterobacteriaceae (Order: Enterobacterales): New Members, Taxonomic Issues, Clinical Importance, and Diagnostic Approaches,” Clinical Microbiology Reviews, vol. 34, no. 2, 2021, doi: 10.1128/CMR.00174-20.

M. A. Croxen, R. J. Law, R. Scholz, K. M. Keeney, M. Wlodarska, and B. B. Finlay, “Recent Advances in Understanding Enteric Pathogenic Escherichia coli,” Clinical Microbiology Reviews, vol. 26, no. 4, pp. 822–880, 2013, doi: 10.1128/CMR.00022-13.

Z. P. Blount, “The Unexhausted Potential of Escherichia coli,” eLife, vol. 4, 2015, doi: 10.7554/eLife.05826.

J. B. Kaper, J. P. Nataro, and H. L. Mobley, “Pathogenic Escherichia coli,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 123–140, 2004, doi: 10.1038/nrmicro818.

B. Clements, L. E. Gahan, and A. G. Torres, “Infection Strategies of Enteric Pathogenic Escherichia coli,” Gut Microbes, vol. 3, no. 2, pp. 71–87, 2012, doi: 10.4161/gmic.19182.

H. Schmidt and M. Hensel, “Pathogenicity Islands in Bacterial Pathogenesis,” Clinical Microbiology Reviews, vol. 17, no. 1, pp. 14–56, 2004, doi: 10.1128/CMR.17.1.14-56.2004.

W. A. Ferens and C. J. Hovde, “Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection,” Foodborne Pathogens and Disease, vol. 8, no. 4, pp. 465–487, 2011, doi: 10.1089/fpd.2010.0673.

J. D. van Elsas, A. V. Semenov, R. Costa, and J. T. Trevors, “Survival of Escherichia coli in the Environment: Fundamental and Public Health Aspects,” ISME Journal, vol. 5, no. 2, pp. 173–183, 2011, doi: 10.1038/ismej.2010.80.

P. M. Fratamico, A. K. DebRoy, and T. P. Strobaugh, “DNA-Based Approaches for Detection and Identification of Escherichia coli and Shigella Species,” in Bad Bug Book, 2nd ed., Silver Spring, MD, USA: U.S. Food and Drug Administration, 2012. [Online]. Available: [https://www.fda.gov](https://www.fda.gov)

K. E. Heiman, R. K. Mody, S. D. Johnson, P. M. Griffin, and L. H. Gould, “Escherichia coli O157 Outbreaks in the United States, 2003–2012,” Emerging Infectious Diseases, vol. 21, no. 8, pp. 1293–1301, 2015, doi: 10.3201/eid2108.141364.

M. S. Al-Haddad and S. A. Al-Jumaily, “Prevalence and Molecular Characterization of Escherichia coli O157:H7 Isolated from Beef and Chicken Meat in Baghdad City,” Iraqi Journal of Veterinary Medicine, vol. 43, no. 1, pp. 71–78, 2019. [Online]. Available: [https://vetmed.uobaghdad.edu.iq](https://vetmed.uobaghdad.edu.iq)

A. D. Khosravi, S. Khaghani, and A. F. Sheikh, “Prevalence of Escherichia coli O157:H7 in Children With Bloody Diarrhea Referring to Abuzar Teaching Hospital, Ahvaz, Iran,” Journal of Clinical and Diagnostic Research, vol. 10, no. 1, pp. DC13–DC15, 2016, doi: 10.7860/JCDR/2016/16765.7086.

D. H. Pincus, “Microbial Identification Using the bioMérieux VITEK 2 System,” in Encyclopedia of Rapid Microbiological Methods, Bethesda, MD, USA: Parenteral Drug Association, 2006.

A. Bauza, R. K. Melton-Celsa, and A. D. O’Brien, “Purification and Characterization of Shiga Toxin 2 Subtypes,” Toxins, vol. 12, no. 1, 2020, doi: 10.3390/toxins12010004.

P. T. Wingfield, “Protein Precipitation Using Ammonium Sulfate,” Current Protocols in Protein Science, vol. 84, no. 1, 2016, doi: 10.1002/cpps.3.

GE Healthcare, Ion Exchange Chromatography: Principles and Methods, Uppsala, Sweden: GE Healthcare Life Sciences, 2016.

M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, vol. 72, no. 1–2, pp. 248–254, 1976, doi: 10.1016/0003-2697(76)90527-3.

Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed., Wayne, PA, USA: CLSI, 2018.

H. M. Majeed, “Isolation and Identification of Escherichia coli O157:H7 From Soft Cheese in Baghdad Markets,” Iraqi Journal of Veterinary Medicine, vol. 37, no. 2, pp. 221–226, 2013.

J. W. Riley, “The Influence of Selective Agents on the Growth of Escherichia coli O157:H7,” Journal of Food Protection, vol. 55, no. 6, pp. 450–456, 1992, doi: 10.4315/0362-028X-55.6.450.

A. R. Melton-Celsa, “Shiga Toxin (Stx) Classification, Structure, and Function,” Microbiology Spectrum, vol. 2, no. 4, 2014, doi: 10.1128/microbiolspec.EHEC-0024-2013.

P. Feng, S. D. Weagant, M. A. Grant, and W. Burkhardt, “Enumeration of Escherichia coli and the Coliform Bacteria,” FDA Bacteriological Analytical Manual, Silver Spring, MD, USA: U.S. Food and Drug Administration, 2020. [Online]. Available: [https://www.fda.gov](https://www.fda.gov)

S. Olsnes and K. Sandvig, “Ricins and Shiga Toxins: Structures, Mechanisms and Medical Applications,” Toxicon, vol. 185, pp. 88–95, 2020, doi: 10.1016/j.toxicon.2020.06.012.

P. I. Tarr, C. A. Gordon, and W. L. Chandler, “Shiga-Toxin-Producing Escherichia coli and Haemolytic Uraemic Syndrome,” The Lancet, vol. 365, no. 9464, pp. 1073–1086, 2005, doi: 10.1016/S0140-6736(05)71144-2.

J. Hacker and J. B. Kaper, “Pathogenicity Islands and the Evolution of Microbes,” Annual Review of Microbiology, vol. 54, pp. 641–679, 2000, doi: 10.1146/annurev.micro.54.1.641.

B. D. Parsons, A. Zelyas, L. Berenger, and L. Chui, “Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli,” Frontiers in Microbiology, vol. 7, 2016, doi: 10.3389/fmicb.2016.00478.

Y. Xu, L. Liu, and Y. Wang, “Optimized Purification of Shiga Toxin 2e From Escherichia coli by Ion-Exchange Chromatography,” Protein Expression and Purification, vol. 165, 2020, doi: 10.1016/j.pep.2019.105494.

K. Sandvig, S. Pust, K. Skotland, and M. L. Torgersen, “Shiga Toxins: Toxicity and Biological Activity,” FEMS Microbiology Reviews, vol. 34, no. 6, pp. 939–955, 2010, doi: 10.1111/j.1574-6976.2010.00218.x.

Thermo Fisher Scientific, Dialysis Methods for Protein Purification, Waltham, MA, USA: Thermo Fisher Scientific, 2021. [Online]. Available: [https://www.thermofisher.com](https://www.thermofisher.com)

R. Quiñones, M. Hopkins, and T. S. Whittam, “Purification of Shiga Toxin 2 From Escherichia coli O157:H7 by Immunoaffinity Chromatography,” Toxins, vol. 4, no. 11, pp. 1157–1165, 2012, doi: 10.3390/toxins4111157.

T. Nitschke, M. A. Grabowska, and H. Schmidt, “Isolation and Characterization of Shiga Toxin 2e-Converting Bacteriophages From Escherichia coli Strains of Porcine Origin,” Applied and Environmental Microbiology, vol. 76, no. 19, pp. 6466–6476, 2010, doi: 10.1128/AEM.00974-10.

A. Jungbauer, “Chromatographic Media for Bioseparation,” Journal of Chromatography A, vol. 1065, no. 1, pp. 3–12, 2005, doi: 10.1016/j.chroma.2004.11.108.

L. M. Skinner, M. A. Patfield, and T. S. Strobaugh, “Purification of Shiga Toxin 2,” Microbial Pathogenesis, vol. 57, pp. 26–33, 2014, doi: 10.1016/j.micpath.2013.12.003.

T. G. Obrig, “Shiga Toxin Mechanism of Action and Host Response,” Current Topics in Microbiology and Immunology, vol. 357, pp. 185–207, 2012, doi: 10.1007/82_2011_179.

C. L. Gyles, “Shiga Toxin-Producing Escherichia coli: An Overview,” Journal of Animal Science, vol. 85, no. 13, pp. E45–E62, 2007, doi: 10.2527/jas.2006-508.

World Health Organization, Shiga Toxin-Producing Escherichia coli (STEC) and Food: Attribution, Characterization and Monitoring, Rome, Italy: FAO/WHO, 2018. [Online]. Available: [https://www.who.int](https://www.who.int)