Login
Section Microbiology

Antibacterial Efficacy of Myrtus communis Nanoemulsion Against Multidrug-Resistant, ESBL-Producing Pseudomonas aeruginosa and Its Association with β-Lactam Resistance Profiles

Vol. 10 No. 2 (2025): December:

Dhulfiqar Abdulhussein Baqer Alkhawga (1)

(1) Department of Microbiology, Faculty Of Sciences, Science and Research Branch, Islamic Azad University, Iran, Islamic Republic of
Fulltext View | Download

Abstract:

General Background: Pseudomonas aeruginosa is a major opportunistic pathogen responsible for severe hospital-acquired infections and is increasingly associated with multidrug resistance mediated by extended-spectrum and metallo-β-lactamases. Specific Background: The rapid dissemination of ESBL- and MBL-producing P. aeruginosa has compromised the efficacy of third-generation cephalosporins and carbapenems, creating an urgent need for alternative antimicrobial strategies. Knowledge Gap: Evidence remains limited regarding the effectiveness of phytochemical nanoemulsions against genetically characterized MDR P. aeruginosa isolates. Aims: This study evaluated the antibacterial activity of a Myrtus communis essential oil nanoemulsion against clinical ESBL-producing P. aeruginosa and examined its association with β-lactam resistance profiles. Results: Among 350 clinical samples, 40 P. aeruginosa isolates showed high resistance to cephalosporins and carbapenems, with prevalent VIM, IMP, CTX-M, and SHV genes. The formulated nanoemulsion exhibited a mean droplet size of 96.15 nm and demonstrated strong antibacterial activity, with a minimum inhibitory concentration of 0.07 mg/µL and a minimum bactericidal concentration of 0.2 mg/µL, effectively inhibiting most MDR isolates. Novelty: This study integrates molecular resistance profiling with nanoemulsion-based phytotherapy against MDR P. aeruginosa. Implications: Myrtle nanoemulsion represents a promising adjunct or alternative antimicrobial approach for managing life-threatening MDR infections, particularly in settings with limited therapeutic options.
Highlight :




  • ESBL and MBL genes were highly prevalent in multidrug-resistant P. aeruginosa.




  • Myrtus communis nanoemulsion showed stable nanoscale properties.




  • Low MIC and MBC values confirmed strong antibacterial activity.




Keywords : Pseudomonas aeruginosa, Myrtus communis nanoemulsion, Antibiotic resistance, ESBL and MBL genes, Antibacterial activity

Downloads

Download data is not yet available.

References

Lalucat, J., Mulet, M., Gomila, M., and García-Valdés, E., “Genomics in Bacterial Taxonomy: Impact on the Genus Pseudomonas,” Genes, vol. 11, no. 2, pp. 139, 2020, doi: 10.3390/genes11020139.

Xu, H., Zhong, J., Yu, G., Wu, J., Jiang, H., and Yang, L., “Further Insights into Metal–DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances,” PLOS One, vol. 9, no. 11, pp. e112272, 2014, doi: 10.1371/journal.pone.0112272.

Reynolds, D., and Kollef, M., “The Epidemiology, Pathogenesis, and Treatment of Pseudomonas aeruginosa Infections: An Update,” Drugs, vol. 81, no. 18, pp. 2117–2131, 2021, doi: 10.1007/s40265-021-01601-9.

Zedde, M., Quatrale, R., Andreone, V., Pezzella, F. R., Micieli, G., Cortelli, P., et al., “Post-Infectious Central Nervous System Vasculitides in Adults: An Underdiagnosed and Treatable Disease. Part I: Overview,” Neurological Sciences, vol. 46, no. 2, pp. 633–650, 2025, doi: 10.1007/s10072-024-07345-2.

Miller, W. R., and Arias, C. A., “ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics,” Nature Reviews Microbiology, vol. 22, no. 10, pp. 598–616, 2024, doi: 10.1038/s41579-024-00973-1.

Gales, A. C., Stone, G. G., Sahm, D. F., Wise, M. G., and Utt, E., “Incidence of ESBLs and Carbapenemases among Enterobacterales and Pseudomonas aeruginosa Isolates Collected Globally: Results from ATLAS 2017–2019,” Journal of Antimicrobial Chemotherapy, vol. 78, no. 7, pp. 1606–1615, 2023, doi: 10.1093/jac/dkad108.

Abbas, A. T., Salih, H. A., and Hassan, B. A., “Review of Beta Lactams,” Annals of the Romanian Society for Cell Biology, vol. 26, no. 1, pp. 1863–1881, 2022, available: [https://www.annalsofrscb.ro](https://www.annalsofrscb.ro).

Kunz Coyne, A. J., El Ghali, A., Holger, D., Rebold, N., and Rybak, M. J., “Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa,” Infectious Diseases and Therapy, vol. 11, no. 2, pp. 661–682, 2022, doi: 10.1007/s40121-022-00603-5.

Fatima, F., Siddiqui, S., and Khan, W. A., “Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era,” Biological Trace Element Research, vol. 199, no. 7, pp. 2552–2564, 2021, doi: 10.1007/s12011-020-02378-5.

Van, L. T., Hagiu, I., Popovici, A., Marinescu, F., Gheorghe, I., Curutiu, C., et al., “Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates,” Plants, vol. 11, no. 15, pp. 2003, 2022, doi: 10.3390/plants11152003.

Brito, G. S., Dutra, R. P., Pereira, A. L. F., Ferreira, A. G. N., Neto, M. S., Holanda, C. A., et al., “Nanoemulsions of Essential Oils against Multi-Resistant Microorganisms: An Integrative Review,” Microbial Pathogenesis, vol. 195, pp. 106837, 2024, doi: 10.1016/j.micpath.2024.106837.

Roozitalab, G., Yousefpoor, Y., Abdollahi, A., Safari, M., Rasti, F., and Osanloo, M., “Antioxidative, Anticancer, and Antibacterial Activities of a Nanoemulsion-Based Gel Containing Myrtus communis L. Essential Oil,” Chemical Papers, vol. 76, no. 7, pp. 4261–4271, 2022, doi: 10.1007/s11696-022-02166-4.

Soomro, Q. A., Nabi, A., Tunio, S. A., Qureshi, A. S., Brohi, N. A., Khushik, F. A., et al., “Antibiotic Resistance Patterns of Pseudomonas aeruginosa Bacterial Species Isolated from Various Clinical Samples,” Pakistan Journal of Health Sciences, vol. 5, no. 2, pp. 32–37, 2024, doi: 10.54393/pjhs.v5i2.1021.

Peymani, A., Naserpour-Farivar, T., Zare, E., and Azarhoosh, K., “Distribution of blaTEM, blaSHV, and blaCTX-M Genes among ESBL-Producing Pseudomonas aeruginosa Isolated from Qazvin and Tehran Hospitals, Iran,” Journal of Preventive Medicine and Hygiene, vol. 58, no. 2, pp. E155–E160, 2017, doi: 10.15167/2421-4248/jpmh2017.58.2.733.

Bahrami, M., Mohammadi-Sichani, M., and Karbasizadeh, V., “Prevalence of SHV, TEM, CTX-M, and OXA-48 β-Lactamase Genes in Clinical Isolates of Pseudomonas aeruginosa in Bandar Abbas, Iran,” Avicenna Journal of Clinical Microbiology and Infection, vol. 5, no. 4, pp. 86–90, 2018, doi: 10.34172/ajcmi.2018.17.

Falleh, H., Jemaa, M. B., Neves, M. A., Isoda, H., Nakajima, M., and Ksouri, R., “Peppermint and Myrtle Nanoemulsions: Formulation, Stability, and Antimicrobial Activity,” LWT – Food Science and Technology, vol. 152, pp. 112377, 2021, doi: 10.1016/j.lwt.2021.112377.

Tenover, F. C., Nicolau, D. P., and Gill, C. M., “Carbapenemase-Producing Pseudomonas aeruginosa: An Emerging Challenge,” Emerging Microbes and Infections, vol. 11, no. 1, pp. 811–814, 2022, doi: 10.1080/22221751.2022.2048763.

Fuste, E., López-Jiménez, L., Segura, C., Gainza, E., Vinuesa, T., and Viñas, M., “Carbapenem-Resistance Mechanisms of Multidrug-Resistant Pseudomonas aeruginosa,” Journal of Medical Microbiology, vol. 62, no. 9, pp. 1317–1325, 2013, doi: 10.1099/jmm.0.060814-0.

Gadaime, N. K., Haddadin, R. N., Shehabi, A. A., and Omran, I. N., “Antimicrobial Resistance and Carbapenemase Dissemination in Pseudomonas aeruginosa Isolates from Libyan Hospitals: A Call for Surveillance and Intervention,” Libyan Journal of Medicine, vol. 19, no. 1, pp. 2344320, 2024, doi: 10.1080/19932820.2024.2344320.

Painuli, S., Semwal, P., Sharma, R., and Akash, S., “Superbugs or Multidrug Resistant Microbes: A New Threat to Society,” Health Science Reports, vol. 6, no. 8, pp. e1480, 2023, doi: 10.1002/hsr2.1480.

Gırgın, H., and Nadaroglu, H., “Exploring the Synthesis of Nanoemulsions and Assessing Their Antimicrobial Effects,” Pharmata, vol. 4, no. 2, pp. 51–59, 2024, available: [https://dergipark.org.tr/en/pub/pharmata](https://dergipark.org.tr/en/pub/pharmata).

Elfadadny, A., Ragab, R. F., AlHarbi, M., Badshah, F., Ibáñez-Arancibia, E., Farag, A., et al., “Antimicrobial Resistance of Pseudomonas aeruginosa: Navigating Clinical Impacts, Current Resistance Trends, and Innovations in Breaking Therapies,” Frontiers in Microbiology, vol. 15, pp. 1374466, 2024, doi: 10.3389/fmicb.2024.1374466.

Ghasemi, E., Raofie, F., and Najafi, N. M., “Application of Response Surface Methodology and Central Composite Design for the Optimisation of Supercritical Fluid Extraction of Essential Oils from Myrtus communis L. Leaves,” Food Chemistry, vol. 126, no. 3, pp. 1449–1453, 2011, doi: 10.1016/j.foodchem.2010.11.135.