Dheyaa Abdulameer Ismael (1)
General Background: Natural gas pressure reduction stations (PRS) consume fuel for gas preheating, causing CO₂ emissions. Specific Background: The Joule-Thomson effect cools gas during throttling, requiring continuous heating to prevent hydrates. Knowledge Gap: Few studies assess solar-assisted PRS performance under real conditions. Aims: This study evaluates parabolic trough collectors (PTCs) with thermal storage for preheating in PRS. Results: The system saves 40% fuel (256,000 m³/year), reduces CO₂ by 14,000 tons, and achieves 11.5% IRR with a 4.5-year payback. Novelty: It integrates validated transient modeling for practical scalability. Implications: Solar thermal integration provides an effective strategy to decarbonize gas infrastructure and enhance energy efficiency.
Solar thermal integration in pressure reduction stations achieves 40% fuel savings and significant CO₂ emission reduction.
The system shows strong economic performance with an IRR of 11.5% and a 4.5-year payback period.
The approach supports sustainable and scalable solutions for gas infrastructure decarbonization.
Keywords : Solar thermal energy, Natural gas pressure reduction, Fuel consumption reduction, Exergy analysis, CO₂ emissions
BP, Statistical Review of World Energy, London, UK: BP p.l.c., 2020. Available: [https://www.bp.com/statisticalreview](https://www.bp.com/statisticalreview)
E. D. Sloan, Clathrate Hydrates of Natural Gases, 3rd ed. Boca Raton, FL, USA: CRC Press, 2008. doi:10.1201/9781420008494
German Energy Agency (DENA), Energy Efficiency in Gas Infrastructure, Berlin, Germany: DENA, 2019. Available: [https://www.dena.de](https://www.dena.de)
International Energy Agency (IEA), Emissions Factors 2021, Paris, France: IEA Publications, 2021. Available: [https://www.iea.org](https://www.iea.org)
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022: Mitigation of Climate Change, Cambridge, UK: Cambridge University Press, 2022. doi:10.1017/9781009157926
National Renewable Energy Laboratory (NREL), Solar Resource Data: Tehran, Golden, CO, USA: NREL, 2023. Available: [https://nsrdb.nrel.gov](https://nsrdb.nrel.gov)
M. Farzaneh-Gord and M. Deymi-Dashtebayaz, A New Design for Natural Gas Pressure Reduction Points by Employing a Turbo Expander and a Solar Heating Set, Renewable Energy, vol. 81, pp. 212–219, 2015. doi:10.1016/j.renene.2015.03.034
J. Lo Cascio, M. Nastasi, M. Franchini, and A. Zsembinszki, Combining Expansion Turbines, Heat Pumps, and Low-Temperature Solar Heat for Enhanced Primary Energy Savings in Gas Pressure Regulating Stations, Sustainable Energy Technologies and Assessments, vol. 64, pp. 103–115, 2024. doi:10.1016/j.seta.2024.103115
G. Bisio, Exergy Analysis of Throttling Valves in Natural Gas Systems, Energy Conversion and Management, vol. 36, no. 6–8, pp. 523–526, 1995. doi:10.1016/0196-8904(95)00008-9
S. Howard, P. Riley, and D. Kim, Energy Recovery in Natural Gas Pressure Reduction, Journal of Energy Resources Technology, vol. 132, no. 3, pp. 034501-1–034501-8, 2010. doi:10.1115/1.4001098
O. Neseli, H. Yavuz, and M. Yildiz, Energy and Exergy Analysis of Electricity Generation from Natural Gas Pressure Reducing Stations, Energy Conversion and Management, vol. 103, pp. 1029–1034, 2015. doi:10.1016/j.enconman.2015.07.022
A. Hosseinnia, M. Farzaneh-Gord, and M. Deymi-Dashtebayaz, Energy Analysis of a Natural Gas Pressure Reduction Station Equipped with Turbo Expander and Solar Collector, in Proc. 4th Int. Conf. Solar Energy, Tehran, Iran, 2017
A. Arabkoohsar, M. Yari, and A. Khalilarya, Energy and Environmental Analysis of a Natural Gas Pressure Reduction Station Equipped with Turboexpander, Solar Collector, and Storage Tank, Energy, vol. 156, pp. 147–161, 2018. doi:10.1016/j.energy.2018.05.001
M. Farzaneh-Gord, M. Deymi-Dashtebayaz, and A. Rahbari, Energy and Exergy Analysis of Natural Gas Pressure Reduction Points Equipped with Solar Heat and Controllable Heaters, Renewable Energy, vol. 70, pp. 44–54, 2014. doi:10.1016/j.renene.2014.03.030
W. J. Kostowski and J. Bargiel, Natural Gas Turbo-Expander Systems: A Dynamic Simulation Model for Energy and Economic Analyses, Thermal Science, vol. 22, no. 5, pp. 2001–2014, 2018. doi:10.2298/TSCI160311142K
Z. Xu, H. Li, and X. Zhang, Performance Analysis of a Power Generation System for Pressure Energy Recovery at Natural Gas City Gate Stations, Applied Thermal Engineering, vol. 212, p. 118130, 2022. doi:10.1016/j.applthermaleng.2022.118130
M. A. Qyyum, M. Imran, and B. Lee, Proposal and Parametric Analysis of an Innovative Natural Gas Pressure Reduction and Liquefaction System for Efficient Exergy Recovery and LNG Storage, Energy, vol. 220, p. 119145, 2021. doi:10.1016/j.energy.2021.119145
J. A. R. Parise, F. da Silva, and M. M. F. Dantas, Performance Assessment of a Novel Natural Gas Pressure Reduction Station Equipped with Parabolic Trough Solar Collectors, Renewable Energy, vol. 127, pp. 820–832, 2018. doi:10.1016/j.renene.2018.05.013
W. J. Kostowski, J. Bargiel, and T. Wolski, Energy Recovery from Natural Gas Pressure Reduction Stations: Integration with Low Temperature Heat Sources, Energy Conversion and Management, vol. 165, pp. 588–601, 2018. doi:10.1016/j.enconman.2018.03.003
International Renewable Energy Agency (IRENA), Renewable Power Generation Costs in 2020, Abu Dhabi, UAE: IRENA, 2020. Available: [https://www.irena.org/publications](https://www.irena.org/publications)
P. Ahmadi, H. Ajam, and H. Hamidi, A Review on Solar-Assisted Gas Turbines, Energy Science & Engineering, vol. 6, no. 4, pp. 420–443, 2018. doi:10.1002/ese3.210
M. F. Ezzat, A. M. Eltamaly, and M. A. Hassan, Energy and Exergy Analysis of a Multigeneration System with Solar and Geothermal Inputs, Energy, vol. 178, pp. 590–602, 2019. doi:10.1016/j.energy.2019.04.09
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Handbook of Fundamentals, Atlanta, GA, USA: ASHRAE, 2017
J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 4th ed. Hoboken, NJ, USA: Wiley, 2013
I. Dincer and M. A. Rosen, Exergy: Energy, Environment and Sustainable Development, 2nd ed. Amsterdam, Netherlands: Elsevier, 2013