Tamara Sabah Hadi (1), Mohammad Salman Kareem (2)
General Background: Salinity stress is a major environmental factor limiting crop productivity worldwide, particularly affecting early growth and germination stages in maize (Zea mays L.), a crop vital for food security and industry. Specific Background: Recent advances in agricultural biophysics have highlighted magnetic field treatment as a safe, cost-effective method to stimulate plant physiological responses and improve stress tolerance. However, its mechanisms and efficacy under salinity conditions remain insufficiently explored. Knowledge Gap: Few studies have systematically assessed the effect of static magnetic fields on maize germination and seedling vigor under salt-induced osmotic stress. Aims: This study aimed to evaluate the impact of static magnetic field pretreatment on maize seed germination, seedling growth, and proline accumulation under varying salinity levels. Results: Exposure to 100 mT for two hours significantly enhanced germination percentage, seedling vigor, proline content, and field emergence compared to untreated controls, particularly under 2000 mg/L NaCl stress. Novelty: The findings demonstrate that static magnetic fields can mitigate the negative effects of salt stress by promoting physiological resilience without chemical intervention. Implications: This technique provides an eco-friendly strategy to improve maize establishment and productivity in saline-prone agricultural systems.Highlight :
Exposure of maize seeds to static magnetic field enhanced germinability under salinity stress conditions.
Magnetic pretreatment improved seedling vigor, proline content, and field emergence.
The 100 mT for two hours treatment showed the best performance in mitigating salt stress.
Keywords : Maize, Magnetic Field, Salinity, Germinability, Field Emergence
Radhakrishnan, R. (2019). Magnetic Field Regulates Plant Functions, Growth and Enhances Tolerance Against Environmental Stresses. Physiology and Molecular Biology of Plants, 25(5), 1107–1119. [https://link.springer.com/article/10.1007/s12298-019-00699-9](https://link.springer.com/article/10.1007/s12298-019-00699-9)
Alvi, M. B., Rafique, M., Tariq, M. S., Hussain, A., Mahmood, T., & Sarwar, M. (2003). Character Association and Path Coefficient Analysis of Grain Yield and Yield Components in Maize (Zea mays L.). Pakistan Journal of Biological Sciences, 6(2), 136–138.
Katerji, N., Van Hoorn, J. W., Hamdy, A., Karam, F., & Mastrorilli, M. (1994). Effect of Salinity on Emergence and on Water Stress and Early Seedling Growth of Sunflower and Maize. Agricultural Water Management, 26, 81–91. [https://doi.org/10.1016/0378-3774(94)90026-4](https://doi.org/10.1016/0378-3774%2894%2990026-4)
Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A., & Shannon, M. C. (1986). Salt Sensitivity of Corn at Various Growth Stages. Irrigation Science, 4, 45–57. [https://link.springer.com/article/10.1007/BF00285556](https://link.springer.com/article/10.1007/BF00285556)
Ashraf, M., McNeilly, T., & Bradshaw, A. D. (1986). The Response to NaCl and Ionic Content of Selected Salt-Tolerant and Normal Lines of Three Legume Forage Species in Sand Culture. New Phytologist, 104(3), 463–471. [https://doi.org/10.1111/j.1469-8137.1986.tb02913.x](https://doi.org/10.1111/j.1469-8137.1986.tb02913.x)
Shalhevet, J. (1995). Using Marginal Quality Water for Crop Production. International Water and Irrigation Review, 15(1), 5–10. [https://www.cabidigitallibrary.org/doi/full/10.5555/19951903787](https://www.cabidigitallibrary.org/doi/full/10.5555/19951903787)
Anand, A., Nagarajan, S., Verma, A. P. S., Joshi, D. K., Pathak, P. C., & Bhardwaj, J. (2012). Pre-Treatment of Seeds with Static Magnetic Field Ameliorates Soil Water Stress in Seedlings of Maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics, 49, 63–70.
Vashisth, A., & Nagarajan, S. (2010). Effect on Germination and Early Growth Characteristics in Sunflower (Helianthus annuus) Seeds Exposed to Static Magnetic Field. Journal of Plant Physiology, 167(2), 149–156. [https://doi.org/10.1016/j.jplph.2009.08.011](https://doi.org/10.1016/j.jplph.2009.08.011)
Mir, H. R. (2010). Studies on Physical, Physiological, and Biochemical Change Associated with Seed Enhancement Treatments in Maize. M.Sc. Thesis, Indian Agricultural Research Institute, New Delhi, India.
Shine, M. B., & Guruprasad, K. N. (2012). Impact of Pre-Sowing Magnetic Field Exposure of Seeds to Stationary Magnetic Field on Growth, Reactive Oxygen Species and Photosynthesis of Maize Under Field Conditions. Acta Physiologiae Plantarum, 34, 255–265. [https://link.springer.com/article/10.1007/s11738-011-0824-7](https://link.springer.com/article/10.1007/s11738-011-0824-7)
Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651–681. [https://doi.org/10.1146/annurev.arplant.59.032607.092911](https://doi.org/10.1146/annurev.arplant.59.032607.092911)
Boyer, J. S. (1982). Plant Productivity and Environment. Science, 218(4571), 443–448. [https://www.science.org/doi/abs/10.1126/science.218.4571.443](https://www.science.org/doi/abs/10.1126/science.218.4571.443)
Legocka, J., & Kluk, A. (2005). Effect of Salt and Osmotic Stress on Changes in Polyamine Content and Arginine Decarboxylase Activity in Lupinus luteus Seedlings. Journal of Plant Physiology, 162, 662–668. [https://doi.org/10.1016/j.jplph.2004.08.009](https://doi.org/10.1016/j.jplph.2004.08.009)
Misra, N., & Dwivedi, U. N. (2004). Genotypic Differences in Salinity Tolerance of Green Gram Cultivars. Plant Science, 166, 1135–1142. [https://doi.org/10.1016/j.plantsci.2003.11.028](https://doi.org/10.1016/j.plantsci.2003.11.028)
Taiz, L., & Zeiger, E. (2002). Plant Physiology. 3rd Edition. Sunderland, MA: Sinauer Associates Inc.
Çarpıcı, E. B., Çelik, N., & Bayram, G. (2009). Effects of Salt Stress on Germination of Some Maize (Zea mays L.) Cultivars. African Journal of Biotechnology, 8(19), 4918–4922.
International Seed Testing Association. (1999). International Rules for Seed Testing. Seed Science and Technology, Zurich: ISTA.
Agrawal, P. K. (1986). Seed Vigor: Concepts and Measurements. In Srivastava, J. P., & Simarski, L. T. (Eds.), Seed Production Technology (pp. 190–198). Aleppo, Syria: ICARDA.
Edwards, R. L., & Sundstrom, F. J. (1987). After Ripening and Harvesting Effects on Tabasco Pepper Seed Germination Performance. HortScience, 22, 473–475. [https://www.cabidigitallibrary.org/doi/full/10.5555/19870345896](https://www.cabidigitallibrary.org/doi/full/10.5555/19870345896)
Abdul-Baki, A. A., & Anderson, J. D. (1970). Viability and Leaching of Sugars from Germinating Barley. Crop Science, 10, 31–34.
Bates, L. S., Waldeen, R. P., & Teare, I. D. (1973). Rapid Determination of Free Proline for Water Stress Studies. Plant and Soil, 39, 205–207. [https://cir.nii.ac.jp/crid/1573950401121371008](https://cir.nii.ac.jp/crid/1573950401121371008)
Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. 2nd Edition. New York: John Wiley & Sons.
Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static Magnetic Field Treatment of Seeds Improves Carbon and Nitrogen Metabolism Under Salinity Stress in Soybean. Bioelectromagnetics, 37(7), 455–470. [https://doi.org/10.1002/bem.21988](https://doi.org/10.1002/bem.21988)
Rahman, M., Kayani, S. A., & Gul, S. (2000). Combined Effects of Temperature and Salinity Stress on Corn cv. Sunahry. Pakistan Journal of Biological Sciences, 3(9), 1459–1463.
Farsiani, A., & Ghobadi, M. E. (2009). Effects of PEG and NaCl Stress on Two Cultivars of Corn (Zea mays L.) at Germination and Early Seedling Stages. World Academy of Science, Engineering and Technology, 57, 382–385.
Khayatnezhad, M., Gholamin, R., Jamaati-e-Somarin, S. H., & Zabihi-Mahmoodabad, R. (2010). Effects of PEG Stress on Corn Cultivars (Zea mays L.) at Germination Stage. World Applied Sciences Journal, 11(5), 504–506.
Awad, M., Al Solaimani, G. S., & El-Nakhlawy, S. F. (2014). Effect of Soil Salinity at Germination and Early Growth Stages of Two Maize (Zea mays L.) Cultivars in Saudi Arabia. Journal of Bioscience and Agriculture Research, 1(1), 47–53.
Khodarahmpour, Z., Ifar, M., & Motamedi, M. (2012). Effects of NaCl Salinity on Maize (Zea mays L.) at Germination and Early Seedling Stage. African Journal of Biotechnology, 11(2), 298–304. [https://doi.org/10.5897/AJB11.2624](https://doi.org/10.5897/AJB11.2624)
Gadallah, M. A. A. (1999). Effect of Proline and Glycine Betaine on Vicia faba Responses to Salt Stress. Biologia Plantarum, 42, 247–249. [https://link.springer.com/article/10.1023/A:1002164719609](https://link.springer.com/article/10.1023/A:1002164719609)
Demir, Y., & Kocacaliskan, I. (2001). Effects of NaCl and Proline on Polyphenol Oxidase Activity in Bean Seedlings. Biologia Plantarum, 44, 607–609. [https://link.springer.com/article/10.1023/A:1013715425310](https://link.springer.com/article/10.1023/A:1013715425310)
Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl Radical Scavenging Activity of Compatible Solutes. Phytochemistry, 28(4), 1057–1060. [https://doi.org/10.1016/0031-9422(89)80182-7](https://doi.org/10.1016/0031-9422%2889%2980182-7)
Hussain, K., Majeed, A., Nawaz, K., & Nisar, M. F. (2010). Changes in Morphological Attributes of Maize (Zea mays L.) Under NaCl Salinity. American-Eurasian Journal of Agricultural and Environmental Science, 8(2), 230–232.
Cramer, G. R., Alberico, G. J., & Schmidt, C. (1994). Leaf Expansion Limits Dry Matter Accumulation of Salt-Stressed Maize. Functional Plant Biology, 21(5), 663–674. [https://doi.org/10.1071/PP9940663](https://doi.org/10.1071/PP9940663)
Hussein, M. M., Balbaa, L. K., & Gaballah, M. S. (2007). Salicylic Acid and Salinity Effects on Growth of Maize Plants. Research Journal of Agriculture and Biological Sciences, 3(4), 321–328.
Akram, M., Malik, M. A., Ashraf, M. Y., Saleem, M. F., & Hussain, M. (2007). Competitive Seedling Growth and K/Na Ratio in Different Maize (Zea mays L.) Hybrids Under Salinity Stress. Pakistan Journal of Botany, 39(7), 2553–2563.
Thomas, J. C., De Armond, R. L., & Bohnert, H. J. (1992). Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures. Plant Physiology, 98(2), 626–631. [https://doi.org/10.1104/pp.98.2.626](https://doi.org/10.1104/pp.98.2.626)
Kholova, J., Sairam, R. K., Meena, R. C., & Srivastava, G. C. (2009). Response of Maize Genotypes to Salinity Stress in Relation to Osmolytes and Metal-Ions Contents, Oxidative Stress and Antioxidant Enzymes Activity. Biologia Plantarum, 53, 249–256. [https://link.springer.com/article/10.1007/s10535-009-0047-6](https://link.springer.com/article/10.1007/s10535-009-0047-6)
Radyukina, N. L., Ivanov, Y. V., Kartashov, A. V., Pashovskiy, P. P., Shevyakova, N. I., & Kuznetsov, V. V. (2011). Regulation of Gene Expression Governing Proline Metabolism in Thellungiella salsuginea by NaCl and Paraquat. Russian Journal of Plant Physiology, 58, 643–652. [https://link.springer.com/article/10.1134/S102144371104011X](https://link.springer.com/article/10.1134/S102144371104011X)