Login
Section Computer Science

The Role of Metamaterials in Advancing Wireless Communications Through Signal Enhancement and Energy Reduction

Vol. 10 No. 2 (2025): December:

Zainab N. Mutashar (1), Sura N. Taraad (2)

(1) Department of Physics, Thi-Qar Directorate of Education, Ministry of Education, Thi-Qar, Iraq
(2) Department of Physics Diwaniyah Directorate of Education, Ministry of Education, Diwaniyah, Iraq
Fulltext View | Download

Abstract:

General Background: Wireless communication systems have become vital in modern life but face persistent challenges including signal degradation, high power consumption, and electromagnetic interference. Specific Background: Recent research highlights metamaterials as a promising solution due to their engineered electromagnetic properties—such as negative permittivity and permeability—that enable unprecedented control over wave propagation. Knowledge Gap: Despite significant theoretical advancements, practical demonstrations of how metamaterials enhance antenna performance in real-world wireless systems remain limited. Aims: This study investigates the integration of metamaterials into antenna structures to improve gain, efficiency, and impedance matching while minimizing reflection and energy loss. Results: Comparative simulations between conventional and metamaterial-enhanced antennas show that at 5.0 GHz, gain increased from 6.1 dBi to 10.4 dBi, efficiency rose from 65.3% to 80.2%, and reflection coefficient dropped from 0.42 to 0.22, confirming superior energy transfer and directivity. Novelty: The research demonstrates how metamaterials function not merely as passive components but as active design tools enabling reconfigurable, frequency-adaptive antenna behavior. Implications: These findings establish metamaterials as essential for next-generation, high-efficiency, and sustainable wireless communication systems.
Highlight :








  1. The study shows metamaterials improve antenna gain, efficiency, and impedance matching compared to traditional designs.




  2. Performance peaks at 5.0 GHz, demonstrating effective resonance and reduced reflection losses.




  3. Findings confirm metamaterials’ potential for advanced, efficient wireless communication systems.












Keywords : Metamaterials, Antenna Performance, Radiation Efficiency, Reflection Coefficient, Impedance Matching





Downloads

Download data is not yet available.

References

Vetrichelvi, G., P. Gowtham, D. Balaji, and L. Rajeshkumar, “Functional Metamaterials for Wireless Antenna Applications – A Review Abetted With Patent Landscape Analysis,” Heliyon, vol. 10, no. 13, p. e34022, 2024. [Online]. Available: [https://doi.org/10.1016/j.heliyon.2024.e34022](https://doi.org/10.1016/j.heliyon.2024.e34022)

Zhou, J., P. Zhang, J. Han, L. Li, and Y. Huang, “Metamaterials and Metasurfaces for Wireless Power Transfer and Energy Harvesting,” Proceedings of the IEEE, vol. 110, no. 1, pp. 1–9, 2022. [Online]. Available: [https://doi.org/10.1109/jproc.2021.3127493](https://doi.org/10.1109/jproc.2021.3127493)

M. Poulakis, “Metamaterials Could Solve One of 6G’s Big Problems [Industry View],” Proceedings of the IEEE, vol. 110, no. 9, pp. 1151–1158, 2022. [Online]. Available: [https://doi.org/10.1109/JPROC.2022.3196696](https://doi.org/10.1109/JPROC.2022.3196696)

V. Veselago, “The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1967.

G. Alexandropoulos, G. Lerosey, M. Debbah, and M. Fink, “Reconfigurable Intelligent Surfaces and Metamaterials: The Potential of Wave Propagation Control for 6G Wireless Communications,” arXiv preprint arXiv:2006.11136, vol. 6, no. 1, pp. 1–9, 2020. [Online]. Available: [http://dx.doi.org/10.48550/arXiv.2006.11136](http://dx.doi.org/10.48550/arXiv.2006.11136)

Y. Hao, “Transformation Electromagnetics in Antenna Engineering: Theory and Implementation,” in Proc. URSI General Assembly and Scientific Symposium, 2011, pp. 1–4. [Online]. Available: [https://doi.org/10.1109/URSIGASS.2011.6050388](https://doi.org/10.1109/URSIGASS.2011.6050388)

J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, “Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications,” International Journal of Antennas and Propagation, vol. 2014, pp. 1–13, 2014. [Online]. Available: [https://doi.org/10.1155/2014/429837](https://doi.org/10.1155/2014/429837)

V. M. Shalaev, “Optical Negative-Index Metamaterials,” Nature Photonics, vol. 1, no. 1, pp. 41–48, 2007. [Online]. Available: [https://doi.org/10.1038/nphoton.2006.49](https://doi.org/10.1038/nphoton.2006.49)

S. Wu, J. Eichenberger, J. Dai, Y. Chang, N. Ghalichechian, and R. R. Zhao, “Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters,” Advanced Intelligent Systems, vol. 4, no. 9, p. 2200106, 2022. [Online]. Available: [https://doi.org/10.1002/aisy.202200106](https://doi.org/10.1002/aisy.202200106)

O. A. M. Abdelraouf et al., “Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications,” ACS Nano, vol. 16, no. 9, pp. 13339–13369, 2022. [Online]. Available: [https://doi.org/10.1021/acsnano.2c04628](https://doi.org/10.1021/acsnano.2c04628)

T. Debogovic and J. Perruisseau-Carrier, “MEMS-Reconfigurable Metamaterials and Antenna Applications,” International Journal of Antennas and Propagation, vol. 2014, p. 138138, 2014. [Online]. Available: [https://doi.org/10.1155/2014/138138](https://doi.org/10.1155/2014/138138)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. [Online]. Available: [https://doi.org/10.1126/science.1058847](https://doi.org/10.1126/science.1058847)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of Effective Permittivity and Permeability of Metamaterials From Reflection and Transmission Coefficients,” Physical Review B, vol. 65, no. 19, p. 195104, 2002. [Online]. Available: [https://doi.org/10.1103/PhysRevB.65.195104](https://doi.org/10.1103/PhysRevB.65.195104)

N. Engheta and R. W. Ziolkowski, “A Positive Future for Double-Negative Metamaterials,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1535–1556, 2005. [Online]. Available: [https://doi.org/10.1109/TMTT.2005.845188](https://doi.org/10.1109/TMTT.2005.845188)

C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. Hoboken, NJ, USA: Wiley, 2011.

L. D. Landau, J. S. Bell, M. J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, 2nd ed. Oxford, U.K.: Pergamon, 2013.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering. Englewood Cliffs, NJ, USA: Prentice Hall, 1990.

C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, USA: Wiley, 2016.

J. D. Jackson, Classical Electrodynamics, 3rd ed. Hoboken, NJ, USA: Wiley, 1998.

T. J. Cui, D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications. New York, NY, USA: Springer, 2010. [Online]. Available: [https://doi.org/10.1007/978-1-4419-0573-4](https://doi.org/10.1007/978-1-4419-0573-4)

D. A. Sehrai et al., “Gain-Enhanced Metamaterial Based Antenna for 5G Communication Standards,” Computers, Materials & Continua, vol. 64, no. 3, pp. 1587–1599, 2020. [Online]. Available: [https://doi.org/10.32604/cmc.2020.011057](https://doi.org/10.32604/cmc.2020.011057)

R. S. Aziz, S. Koziel, and A. Pietrenko-Dabrowska, “Millimeter Wave Negative Refractive Index Metamaterial Antenna Array,” Scientific Reports, vol. 14, no. 1, p. 16037, 2024. [Online]. Available: [https://doi.org/10.1038/s41598-024-67234-z](https://doi.org/10.1038/s41598-024-67234-z)

M. Ashfaq et al., “5G Antenna Gain Enhancement Using a Novel Metasurface,” Computers, Materials and Continua, vol. 72, no. 2, pp. 3601–3611, 2022. [Online]. Available: [https://doi.org/10.32604/cmc.2022.025558](https://doi.org/10.32604/cmc.2022.025558)

E. Coskun and J. J. Garcia-Garcia, “Metamaterial Impedance Matching Network for Ambient RF-Energy Harvesting Operating at 2.4 GHz and 5 GHz,” Electronics, vol. 10, no. 10, p. 1196, 2021. [Online]. Available: [https://doi.org/10.3390/electronics10101196](https://doi.org/10.3390/electronics10101196)

A. Lamminen et al., “Graphene-Flakes Printed Wideband Elliptical Dipole Antenna for Low-Cost Wireless Communications Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1883–1886, 2017. [Online]. Available: [https://doi.org/10.1109/LAWP.2017.2684907](https://doi.org/10.1109/LAWP.2017.2684907)

M. Alibakhshikenari et al., “Bandwidth and Gain Enhancement of Composite Right/Left-Handed Metamaterial Transmission Line Planar Antenna Employing a Non-Foster Impedance Matching Circuit Board,” Scientific Reports, vol. 11, no. 1, p. 7472, 2021. [Online]. Available: [https://doi.org/10.1038/s41598-021-86973-x](https://doi.org/10.1038/s41598-021-86973-x)

B. A. F. Esmail and S. Koziel, “Design and Optimization of Metamaterial-Based Highly-Isolated MIMO Antenna With High Gain and Beam Tilting Ability for 5G Millimeter Wave Applications,” Scientific Reports, vol. 14, no. 1, p. 3203, 2024. [Online]. Available: [https://doi.org/10.1038/s41598-024-53723-8](https://doi.org/10.1038/s41598-024-53723-8)

M. Alibakhshikenari et al., “Impedance Bandwidth Improvement of a Planar Antenna Based on Metamaterial-Inspired T-Matching Network,” IEEE Access, vol. 9, pp. 67916–67927, 2021. [Online]. Available: [https://doi.org/10.1109/ACCESS.2021.3076975](https://doi.org/10.1109/ACCESS.2021.3076975)

S. K. Budarapu, M. S. Sunder, and B. Ramakrishna, “Performance Enhancement of Patch Antenna Using RIS and Metamaterial Superstrate for Wireless Applications,” Progress in Electromagnetics Research C, vol. 130, pp. 95–105, 2023. [Online]. Available: [http://dx.doi.org/10.2528/PIERC22112603](http://dx.doi.org/10.2528/PIERC22112603)

M. M. Rahman, Y. Yang, and S. Dey, “Application of Metamaterials in Antennas for Gain Improvement: A Study on Integration Techniques and Performance,” IEEE Access, vol. 13, pp. 49489–49503, 2025. [Online]. Available: [https://doi.org/10.1109/ACCESS.2025.3552023](https://doi.org/10.1109/ACCESS.2025.3552023)

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of Electromagnetic Waves in a Metamaterial That Mimics Electromagnetically Induced Transparency,” Physical Review B, vol. 87, no. 16, p. 161110, 2013. [Online]. Available: [https://doi.org/10.1103/PhysRevB.87.161110](https://doi.org/10.1103/PhysRevB.87.161110)

E. Dogan, E. Unal, D. Kapusuz, M. Karaaslan, and C. Sabah, “Microstrip Patch Antenna Covered With Left-Handed Metamaterial,” Applied Computational Electromagnetics Society Journal (ACES), vol. 28, no. 10, pp. 999–1004, 2021.