Login
Section Computer Science

Support Vector Machine Algorithm for Classifying Public Satisfaction Index

Algoritma Mesin Vektor Dukungan untuk Klasifikasi Indeks Kepuasan Publik
Vol. 10 No. 2 (2025): December:

Efraim Ronald Stefanus Moningkey (1), Della Deviani Harisondak (2)

(1) Program Studi Teknik Informatika, Universitas Negeri Manado, Indonesia
(2) Program Studi Teknik Informatika, Universitas Negeri Manado, Indonesia
Fulltext View | Download

Abstract:

General Background: Evaluating public satisfaction with government services is vital to ensuring transparency and continuous improvement in public administration. Specific Background: At the Investment and One-Stop Integrated Services Office (DPMPTSP) of Minahasa Regency, satisfaction assessment has been limited by manual data processing and a lack of integrated systems, leading to inefficiencies in monitoring and classification. Knowledge Gap: Existing approaches to measuring the Public Satisfaction Index (IKM) have not effectively utilized machine learning to automate classification and provide real-time recommendations. Aims: This study aims to implement the Support Vector Machine (SVM) algorithm to classify public satisfaction levels and support service evaluation at DPMPTSP Minahasa. Results: Using 182 testing datasets, the system successfully categorized satisfaction into four levels—very satisfied, satisfied, less satisfied, and dissatisfied—with the majority of respondents classified as satisfied. The developed web-based system also provided actionable recommendations for each satisfaction level. Novelty: This study presents an integrated and automated framework that applies SVM to the public service domain, enabling efficient, accurate, and real-time evaluation. Implications: The findings demonstrate that machine learning can enhance public service management by facilitating data-driven decision-making and promoting service quality improvements.
Highlight :




  • The SVM algorithm effectively classifies public satisfaction levels into four categories.




  • The web-based system improves efficiency and accuracy in service evaluation.




  • Recommendations from the system support continuous service quality improvement.




Keywords : Public Satisfaction Index, Support Vector Machine, Classification, Service Quality, DPMPTSP Minahasa

Downloads

Download data is not yet available.

References

Y. I. Wahyudi, N. H. Zainal, and A. F. Afrisal, “Indeks Kepuasan Masyarakat Terhadap Pelayanan Perizinan Berbasis Aplikasi OSS di Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu Kabupaten Pinrang,” Publician: Journal of Public Service, Public Policy, and Administration, vol. 3, no. 1, pp. 44–50, 2024. Available: [https://doi.org/10.56326/jp.v3i1.4135](https://doi.org/10.56326/jp.v3i1.4135)

O. Veza and R. P. Risma, “Perancangan Multimedia Interaktif Profil Dinas Penanaman Modal dan PTSP Kota Batam Sebagai Media Informasi,” Engineering and Technology International Journal, vol. 2, no. 2, pp. 124–138, 2020. Available: [https://www.mand-ycmm.org/index.php/eatij/article/view/52](https://www.mand-ycmm.org/index.php/eatij/article/view/52)

S. Silviana, R. Astuti, and F. M. Basysyar, “Penerapan Algoritma Support Vector Machine (SVM) pada Ulasan Pengunjung Wisata Kabupaten Kuningan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 259–265, 2024. Available: [https://doi.org/10.36040/jati.v8i1.8257](https://doi.org/10.36040/jati.v8i1.8257)

C. S. Ningsih, E. Supriyati, and T. Listiyorini, “Digitalisasi Pengelolaan Data Santri di Ponpes Al-Achsaniyyah Berbasis Website,” Semantik: Teknologi Informasi, vol. 11, no. 1, pp. 46–52, 2025. Available: [https://doi.org/10.55679/semantik.v11i1.94](https://doi.org/10.55679/semantik.v11i1.94)

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 3436–3442, 2022. Available: [https://doi.org/10.35957/jatisi.v9i4.3586](https://doi.org/10.35957/jatisi.v9i4.3586)

Sunardi, Nasaruddin, and Rahmat, “Implementasi Algoritma Support Vector Machine (SVM) pada Sistem Layanan Pengaduan Masyarakat Berbasis Web,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 13, no. 2, pp. 177–184, 2024.

N. L. Ratniasih, N. W. N. Jayanti, and others, “Klasifikasi Kepuasan Mahasiswa Menggunakan Algoritma Support Vector Machine dan Metode Stemming Sastrawi,” Prosiding CORISINDO, pp. 373–378, 2023. Available: [https://stmikpontianak.org/ojs/index.php/corisindo/article/view/357](https://stmikpontianak.org/ojs/index.php/corisindo/article/view/357)

F. Ariani and A. Taufik, “Perbandingan Metode Klasifikasi Data Mining untuk Prediksi Tingkat Kepuasan Pelanggan Telkomsel Prabayar,” SATIN: Sains dan Teknologi Informasi, vol. 6, no. 2, pp. 46–55, 2020. Available: [https://doi.org/10.33372/stn.v6i2.666](https://doi.org/10.33372/stn.v6i2.666)

A. Nofandi, N. Y. Setiawan, and D. W. Brata, “Analisis Sentimen Ulasan Pelanggan dengan Metode Support Vector Machine (SVM) untuk Peningkatan Kualitas Layanan pada Restoran Warung Wareg,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp. 458–466, 2023. Available: [https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12218](https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12218)

F. T. Nugraha and H. Hendry, “Implementasi Machine Learning Sebagai Analisis Kepuasan Pelanggan Terhadap Penggunaan Aplikasi KAI Access,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 4, pp. 1248–1255, 2023. Available: [https://doi.org/10.29100/jipi.v8i4.4185](https://doi.org/10.29100/jipi.v8i4.4185)

R. Priskila, N. Noor, K. Sari, Y. Andy, and P. Surana, “Aplikasi Website Indeks Kepuasan Masyarakat (Studi Kasus: Kelurahan Panarung),” Jurnal Teknologi dan Sistem Informasi, vol. 2, pp. 290–299, 2022.

N. L. Ratniasih, N. W. N. Jayanti, and others, “Klasifikasi Kepuasan Mahasiswa Menggunakan Algoritma Support Vector Machine dan Metode Stemming Sastrawi,” Prosiding CORISINDO, pp. 373–378, 2023. Available: [https://stmikpontianak.org/ojs/index.php/corisindo/article/view/357](https://stmikpontianak.org/ojs/index.php/corisindo/article/view/357)

S. Silviana, R. Astuti, and F. M. Basysyar, “Penerapan Algoritma Support Vector Machine (SVM) pada Ulasan Pengunjung Wisata Kabupaten Kuningan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 259–265, 2024. Available: [https://doi.org/10.36040/jati.v8i1.8257](https://doi.org/10.36040/jati.v8i1.8257)

T. Suhartini, “Kantor Kelurahan Tambakrejo,” Jurnal Administrasi Publik dan Pemerintahan Daerah, vol. 11, no. 2, pp. 112–120, 2023.

R. Sulaehani and B. Bahrin, “Klasifikasi Tingkat Kepuasan Masyarakat Program RTP2S Menggunakan Metode SVM Berbasis Backward Elimination,” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 115–121, 2023. Available: [https://doi.org/10.37905/jjeee.v5i1.17204](https://doi.org/10.37905/jjeee.v5i1.17204)

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 3436–3442, 2022. Available: [https://doi.org/10.35957/jatisi.v9i4.3586](https://doi.org/10.35957/jatisi.v9i4.3586)

O. Veza and R. P. Risma, “Perancangan Multimedia Interaktif Profil Dinas Penanaman Modal dan PTSP Kota Batam Sebagai Media Informasi,” Engineering and Technology International Journal, vol. 2, no. 2, pp. 124–138, 2020. Available: [https://www.mand-ycmm.org/index.php/eatij/article/view/52](https://www.mand-ycmm.org/index.php/eatij/article/view/52)

Y. I. Wahyudi, N. H. Zainal, and A. F. Afrisal, “Indeks Kepuasan Masyarakat Terhadap Pelayanan Perizinan Berbasis Aplikasi OSS di Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu Kabupaten Pinrang,” Publician: Journal of Public Service, Public Policy, and Administration, vol. 3, no. 1, pp. 44–50, 2024. Available: [https://doi.org/10.56326/jp.v3i1.4135](https://doi.org/10.56326/jp.v3i1.4135)