Oloan Johanes Siregar (1), Johannes Tarigan (2), Nursyamsi Nursyamsi (3)
General Background: Long-span buildings are essential in accommodating wide, unobstructed interior spaces, commonly applied in structures such as stadiums and assembly halls. Specific Background: One effective structural system for such buildings is the space truss with barrel vault configurations, known for their strength and spatial efficiency. Knowledge Gap: However, limited comparative studies exist on the seismic performance and material efficiency of various barrel vault space truss models. Aims: This study aims to analyze and optimize seven barrel vault space truss models spanning 192 m by 120 m with a height of 50 m, focusing on earthquake load response and structural tonnage. Results: The analysis reveals that model 1 has the lowest base shear (V = 3142.50 kN) and structural tonnage, while model 6 exhibits the highest tonnage—62.24% heavier than model 1—and base shear of 4881.18 kN. Novelty: The study provides a comparative seismic performance assessment of large-span space truss models under identical geometric and loading conditions. Implications: These findings support the structural optimization of space trusses for earthquake-prone regions, offering practical insights for efficient and resilient long-span building design.
Highlights:
Highlights the efficiency of barrel vault space trusses in seismic conditions.
Compares seven models to determine the most optimal structure.
Emphasizes material savings through structural optimization.
Keywords: Space Truss, Earthquake Load, Structural Analysis, Barrel Vault, Optimization
A. L. Rionaldhy, Desain Software Space Frame Menggunakan MERO Sistem Terintegrasi dengan SAP2000 V14.1, Tugas Akhir, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Sepuluh Nopember, 2007.
J. Handoko, H. Huzaim, and R. Putra, “Analisis Rangka Ruang (Space Truss) Menggunakan Baja Hollow yang Diisi Mortar FAS 0,4 dengan Variasi Ukuran Profil Baja Hollow terhadap Kapasitas dan Daktilitas Rangka,” Jurnal Teknik Sipil dan Lingkungan, vol. 5, no. 1, pp. 45–52, 2020.
ATC-40, Seismic Evaluation and Retrofit of Concrete Buildings, vol. 1, Applied Technology Council, California Seismic Safety Commission, 1996.
Badan Standarisasi Nasional, SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non-Gedung, Jakarta: BSN, 2019.
Badan Standarisasi Nasional, SNI 1727:2020 Beban Minimum untuk Perencanaan Bangunan Gedung dan Struktur Lain, Jakarta: BSN, 2020.
C. A. Freitas and A. Silva, “Numerical and Experimental Study of Steel Space Truss with Stamped Connection,” Journal of Civil Engineering and Architecture, vol. 5, no. 12, pp. 1109–1115, 2011.
G. S. Ramaswamy, G. R. Surech, and M. A. Khan, Analysis, Design and Construction of Steel Space Frame, London: Thomas Telford, 2002.
B. Hamidi, “Experimental Analysis of Steel Space Truss Structure,” in Proc. 17th Int. Research/Expert Conf. on Trends in the Development of Machinery and Associated Technology (TMT 2013), Istanbul, Turkey, pp. 633–636, 2013.
H. Rakib and N. A. Ragib, “Comparison of Effect of Wind and Seismic Load on Building Shape,” International Journal of Scientific and Engineering Research, vol. 8, no. 9, pp. 124–128, 2017.
T. Herzog, Pneumatic Structures: A Handbook for the Architect and Engineer, London: Lockwood Staples, 1977.
J. Holmes and R. Weller, Design Wind Speeds for the Asia–Pacific Region, Standards Australia, HB 212-2002, 2016.
Huthudi, “Struktur Rangka Ruang Baja Sebagai Pendukung Lantai Atas,” Dimensi Teknik Arsitektur, vol. 33, no. 1, pp. 52–59, Jul. 2005.
M. Irandianto, Perencanaan Struktur Atap Stadion Mimika, Tugas Akhir, Fakultas Teknik Sipil, Institut Teknologi Sepuluh Nopember, 2003.
A. F. Kadhum, “Nonlinear Finite Element Analysis of Space Truss,” Anbar Journal for Engineering Sciences, vol. 3, no. 1, pp. 12–21, 2010.
J. W. Kim, “Analysis and Test for Shaping Formation of Space Truss by Means of Cable-Tensioning,” in Proc. ISCAS’07, ed. R. G. Beale, Oxford Brookes University, 2007.
T. T. Lan, “Space Frame Structures,” in Structural Engineering Handbook, ed. W. F. Chen, Boca Raton: CRC Press LLC, 1999.
T. T. Lan, “Space Frame Structures,” in Structural Engineering Handbook, Boca Raton: CRC Press LLC, 1999.
C. V. R. Murty, G. Rupen, A. R. Vijayanarayan, and V. V. Mehta, Earthquake Behaviour of Buildings, Gujarat: Gujarat State Disaster Management Authority (GSDMA), 2013.
National Institute of Building Sciences, NEHRP Provisions: Design Examples, Washington, DC: FEMA, 2006.
I. Nofrianto, “Perbandingan Antara Sistem Rangka Batang Bidang (Plane Truss) dengan Sistem Rangka Ruang (Space Truss) pada Perencanaan Struktur Atap Stadion Utama Riau,” Tugas Akhir, Jurusan Teknik Sipil, Universitas Riau, 2013.
A. Oktoriyanto, “Perbandingan Respons Struktur Akibat Beban Gempa dan Angin Statik Gedung Bertingkat Menurut SNI 03-1726-2012 dan SNI 03-1726-2002,” Jurnal Rekayasa Sipil dan Desain, vol. 2, no. 3, pp. 34–42, 2014.
C. G. Salmon and J. E. Johnson, Steel Structures: Design and Behavior, 4th ed., New York: HarperCollins College Publishers, 1996.