Loading [MathJax]/jax/output/HTML-CSS/config.js
Loading [MathJax]/jax/output/HTML-CSS/config.js
Login
Section Medicine

Anti-Leishmanial Activity of Iraqi Plant Gundelia Tournefortii and Isolation of Beta-Sitosterol

Vol 10 No 1 (2025): June:

Zainab Mizher Razaq (1), Yessar A. Dawood (2), Thukaa Z. Abdul Jalil (3)

(1) Department of Pharmacognosy, College of Pharmacy, University of Basrah, Basra, Iraq
(2) Department of Pharmacognosy, College of Pharmacy, University of Basrah, Basra, Iraq
(3) Department of Pharmacognosy, College of Pharmacy, University of Baghdad, Baghdad, Iraq
Fulltext View | Download

Abstract:

Background: Herbal medicine remains a significant focus in contemporary pharmacological research due to its therapeutic benefits and low side effects. Specific Background: Gundelia tournefortii is recognized for its medicinal potential, yet its anti-leishmanial properties are underexplored. Leishmaniasis, particularly caused by Leishmania donovani, remains a critical health challenge with no available vaccines and limited treatment options. Knowledge Gap: Despite the ethnobotanical use of G. tournefortii, its phytoconstituents, especially beta-sitosterol, have not been thoroughly investigated for anti-leishmanial activity. Aims: This study aimed to isolate beta-sitosterol from the oil extract of Iraqi G. tournefortii and evaluate the anti-leishmanial efficacy of two different extracts against Leishmania tropica and Leishmania donovani, in comparison to the standard drug, pentostam. Results: Beta-sitosterol was successfully isolated via HPLC at a concentration of 98.08 ppm. The oil extract showed superior efficacy, with IC₅₀ values of 0.042 mg/ml for L. tropica and 0.00127 mg/ml for L. donovani. Novelty: This research represents the first report on the isolation of beta-sitosterol from Iraqi G. tournefortii and its significant anti-leishmanial activity. Implications: The findings support the potential of G. tournefortii oil extract as a natural source for developing new anti-leishmanial therapies, particularly due to its sterol and triterpene content.


Highlights:




  • First isolation of beta-sitosterol from Iraqi G. tournefortii.




  • Oil extract shows high efficacy against L. donovani.




  • Potential for developing plant-based leishmaniasis treatment.




Keywords: Gundelia Tournefortii, Leishmania Tropica, Leishmania Donovani, Pentostam,  IC50

References

M. C. Tan et al., “Sterols and Triterpenes From Gundelia Tournefortii L. var. Armata,” Der Pharmacia Chemica, Dec. 2016. [Online]. Available: www.derpharmachemica.com

M. A. Samani, M. K. Rafieian, and N. Azimi, “Gundelia: A Systematic Review of Medicinal and Molecular Perspective,” Pakistan Journal of Biological Sciences, vol. 16, no. 21, pp. 1238–1247, 2013, doi: 10.3923/pjbs.2013.1238.1247.

B. Matthäus and M. M. Özcan, “Chemical Evaluation of Flower Bud and Oils of Tumbleweed (Gundelia Tournefortii L.) as a New Potential Nutrition Source,” Journal of Food Biochemistry, vol. 35, no. 4, pp. 1257–1266, Aug. 2011, doi: 10.1111/j.1745-4514.2010.00449.x.

J. A. A. S. N. J. S. A. H. A. S. H. M. G. Malik Alqub, “Gundelia Tournefortii Inhibits Hepatocellular Carcinoma Progression by Lowering Gene Expression of the Cell Cycle and Hepatocyte Proliferation in Immunodeficient Mice,” Biomedicine & Pharmacotherapy, vol. 156, no. 2, 2022, doi: 10.1016/j.biopha.2022.113885.

Y. S. B. S. S. K. Hilal Zaid, “Gundelia Tournefortii Antidiabetic Efficacy: Chemical Composition and GLUT4 Translocation,” Evidence-Based Complementary and Alternative Medicine, vol. 2018, Apr. 2018, doi: 10.1155/2018/8294320.

S. A. M. Al-Saadi, “Variations in Fatty Acid Methyl Ester Contents and Composition in Oil Seeds Gundelia Tournefortii L. (Asteraceae),” Advances in Plants & Agriculture Research, vol. 6, no. 6, 2017, doi: 10.15406/apar.2017.06.00236.

V. D. R. R. P. R. C. E. de A. M.-S. M. Machado-Neves, “Effects of Terpenes in the Treatment of Visceral Leishmaniasis: A Systematic Review of Preclinical Evidence,” Pharmacological Research, vol. 177, 2022, doi: 10.1016/j.phrs.2022.106117.

N. Hani et al., “Gundelia Tournefortii L. (Akkoub): A Review of a Valuable Wild Vegetable From Eastern Mediterranean,” Genetic Resources and Crop Evolution, 2024, doi: 10.1007/s10722-024-01927-2.

M.-A. Hartley et al., “Leishmania RNA Virus: When the Host Pays the Toll,” Frontiers in Cellular and Infection Microbiology, vol. 2, p. 99, 2012, doi: 10.3389/fcimb.2012.00099.

M. den Boer, D. Argaw, J. Jannin, and J. Alvar, “Leishmaniasis Impact and Treatment Access,” Clinical Microbiology and Infection, vol. 17, no. 10, pp. 1471–1477, Oct. 2011, doi: 10.1111/j.1469-0691.2011.03635.x.

T. Zuhair, “Investigation the Activity of Iraqi Agave Attenuata on In Vitro Growth of Cutaneous Leishmania Promastigotes,” Journal of Research in Medical and Dental Science, Accessed: Mar. 19, 2024. [Online]. Available: https://www.researchgate.net/publication/368426745

A. Oryan, “Plant-Derived Compounds in the Treatment of Leishmaniasis,” Iranian Journal of Veterinary Research, vol. 16, no. 1, pp. 1–19, Apr. 2015, doi: 10.22099/ijvr.2015.2917.

S. Sundar and J. Chakravarty, “An Update on Pharmacotherapy for Leishmaniasis,” Expert Opinion on Pharmacotherapy, vol. 16, no. 2, pp. 237–252, Feb. 2015, doi: 10.1517/14656566.2015.973850.

N. M. Shareef and T. Z. Abdul-Jalil, “Iraqi Hyacinthus Orientalis L. Flowers as the Source of Bioactive Compounds Especially Stigmasterol: Identification, Isolation and Characterization,” International Journal of Drug Delivery Technology, vol. 13, no. 3, pp. 792–796, Jul. 2023, doi: 10.25258/ijddt.13.3.02.

H. H. Heal, Z. T. Al-Dallee, and E. J. Khadim, “Extraction, Isolation and Identification of Luteolin Flavonoid From Vitex Pseudonegundo Leaves,” in IOP Conference Series: Earth and Environmental Science, vol. 1262, 2023, doi: 10.1088/1755-1315/1262/5/052016.

A. M. M. H. Hamadanalla, “Phytochemical Screening of Leaves and Roots of Stylochiton Borumensis: A Medicinal Plant,” Earth & Environmental Science Research & Reviews, vol. 2, no. 1, 2019, doi: 10.33140/eesrr.02.01.03.

W. A. Al Isawi, “Environmental Applications of Chromatography–Mass Spectrometry,” Master’s Theses, Western Michigan University, Apr. 2016. [Online]. Available: https://scholarworks.wmich.edu/masters_theses/683

A. K. Maji, S. Pandit, P. Banerji, and D. Banerjee, “A Validated RP-HPLC Method for Simultaneous Determination of Betulin, Lupeol and Stigmasterol in Asteracantha Longifolia Nees,” Not Published, [Online]. Available: ResearchGate or conference preprint.

D. Sereno and J. L. Lemesre, “Axenically Cultured Amastigote Forms as an In Vitro Model for Investigation of Antileishmanial Agents,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 5, pp. 972–976, 1997, doi: 10.1128/aac.41.5.972.

D. Bansal et al., “In Vitro Activity of Antiamoebic Drugs Against Clinical Isolates of Entamoeba Histolytica and Entamoeba Dispar,” Annals of Clinical Microbiology and Antimicrobials, vol. 3, Dec. 2004, doi: 10.1186/1476-0711-3-27.

N. Al-Ogaili, “Synergistic Effect of Lawsonia Inermis and Peganum Harmala Aqueous Extracts on In Vitro Growth of Leishmania Tropica Promastigotes Compared to Sodium Stibogluconate,” QMJ, Nov. 2016, doi: 10.28922/qmj.12.22.76-83.

C. Carranza Alvarez et al., “Use of Standardized Units for a Correct Interpretation of IC50 Values Obtained From the Inhibition of the DPPH Radical by Natural Antioxidants,” Chemical Papers, vol. 74, no. 10, pp. 3325–3334, 2020, doi: 10.1007/s11696-020-01161-x.

A. R. A. M. Haque, “Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes,” Journal of Pharmacy and Bioallied Sciences, vol. 121, no. 1, pp. 1–10, Jan. 2020, doi: 10.4103/jpbs.JPBS-175-19.

B. Kumar et al., “Phytochemical Screening and Extraction: A Review,” International Journal of Pharmaceutical Sciences and Research, Feb. 2011. [Online]. Available: http://www.ipharmsciencia.com

M. Bauser, “Preparative High-Performance Liquid Chromatography–Mass Spectrometry for the High-Throughput Purification of Combinatorial Libraries,” Journal of Chromatographic Science, vol. 40, no. 5, pp. 292–296, 2002, doi: 10.1093/chromsci/40.5.292.

L. Maes et al., “Anti-Infective Potential of Natural Products: How to Develop a Stronger In Vitro Proof-of-Concept,” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 290–302, 2006, doi: 10.1016/j.jep.2006.04.003.

A. O. A. A. Ncube N. S., “Assessment Techniques of Antimicrobial Properties of Natural Compounds of Plant Origin: Current Methods and Future Trends,” African Journal of Biotechnology, vol. 7, no. 12, Nov. 2008, doi: 10.5897/ajb07.613.

I. G. Demarchi et al., “Antileishmanial Activity of Essential Oil and 6,7-Dehydroroyleanone Isolated From Tetradenia Riparia,” Experimental Parasitology, vol. 157, pp. 128–137, Oct. 2015, doi: 10.1016/j.exppara.2015.06.014.

S. Bhattacharjee et al., “Antileishmanial and Immunomodulatory Activities of Lupeol, a Triterpene Compound Isolated From Sterculia Villosa,” International Journal of Antimicrobial Agents, vol. 50, no. 4, pp. 512–522, Apr. 2017, doi: 10.1016/j.ijantmicag.2017.04.022.

G. K. Kaur and S. Kaur, “Lupeol Induces Immunity and Protective Efficacy in a Murine Model Against Visceral Leishmaniasis,” Parasitology, vol. 146, no. 11, pp. 1440–1450, Jun. 2019, doi: 10.1017/S0031182019000659.

I. A. Rodrigues et al., “Cytotoxicity and Anti-Leishmania Amazonensis Activity of Citrus Sinensis Leaf Extracts,” Pharmaceutical Biology, vol. 55, no. 1, pp. 1780–1786, May 2017, doi: 10.1080/1388029.2017.1325380.

S. M. Shah et al., “β-Sitosterol From Ifloga Spicata (Forssk.) Sch. Bip. as a Potential Anti-Leishmanial Agent Against Leishmania Tropica: Docking and Molecular Insights,” Steroids, vol. 148, pp. 56–62, Aug. 2019, doi: 10.1016/j.steroids.2019.05.001.