Loading [MathJax]/jax/output/HTML-CSS/config.js
Login
Section Energy

High-Yield Cellulose Hydrolysis Using Silica-Amino Methanesulfonic Acid Catalyst

Hidrolisis Selulosa Hasil Tinggi Menggunakan Katalis Asam Metanesulfonat Silika-Amino
Vol 10 No 1 (2025): June:

Hussein Apdel Bari Zuwaid (1)

(1) Iraqi Ministry of Education, Iraq
Fulltext View | Download

Abstract:

General Background: The increasing demand for sustainable energy sources has driven interest in replacing fossil fuels with biofuels. Specific Background: Second-generation bio-refining technologies utilizing lignocellulosic biomass offer a promising path toward environmentally and economically viable biofuel production. Knowledge Gap: However, efficient catalytic systems for cellulose hydrolysis under mild conditions remain limited. Aims: This study aims to synthesize and evaluate a heterogeneous catalyst, Silica-Amino methanesulfonic acid, for effective cellulose hydrolysis into glucose. Results: The catalyst, synthesized via one-pot and reflux methods, achieved up to 88% hydrolysis yield at 130 °C within 6 hours. The one-pot method yielded a 4.2 g catalyst with slightly superior activity. Optimal conditions were determined as 0.1 g catalyst mass and 130 °C. Solvent screening revealed that DMF/LiCl and Cyclohexanol/LiCl mixtures were most effective. Novelty: The direct (one-pot) synthesis method produced a catalyst with comparable or superior performance to traditional reflux methods, highlighting a more efficient and scalable approach. Implications: These findings demonstrate the potential of Silica-Amino methanesulfonic acid as a robust and reusable catalyst for bio-refining processes, contributing to the advancement of green chemistry and sustainable fuel alternatives.


Highlights:


 




  1. Catalyst achieved 88% glucose yield from cellulose.




  2. One-pot synthesis more efficient than reflux.




  3. DMF/LiCl best solvent for hydrolysis process.




 


Keywords: Biofuels, Cellulose Hydrolysis, Heterogeneous Catalyst, Silica-Amino Methanesulfonic Acid, Lignocellulosic Biomass

References

S. K. S. Hossain, L. Mathur, P. K. Roy, S. K. S. Hossain, L. Mathur, and P. K. R. Rice, “Rice husk / rice husk ash as an alternative source of silica in ceramics : A review,” J. Asian Ceram. Soc., vol. 6, no. 4, pp. 299–313, 2018, doi: 10.1080/21870764.2018.1539210.

P. T. Anastas, L. G. Heine, and T. C. Williamson, “Green Chemical Syntheses and Processes: Introduction,” pp. 1–6, 2000, doi: 10.1021/bk-2000-0767.ch001.

N. Padkho, “A new design recycle agricultural waste materials for profitable use rice straw and maize husk in wall,” Procedia Eng., vol. 32, pp. 1113–1118, 2012, doi: 10.1016/j.proeng.2012.02.063.

T. H. Liou and P. Y. Wang, “Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites,” Waste Manag., vol. 108, pp. 51–61, 2020, doi: 10.1016/j.wasman.2020.04.029.

M. A. Ahsan et al., “Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation,” Sci. Total Environ., vol. 698, p. 134214, 2020, doi: 10.1016/j.scitotenv.2019.134214.

H. S. G. Tan, E. van den Berg, and M. Stieger, “The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food,” Food Qual. Prefer., vol. 52, pp. 222–231, 2016, doi: 10.1016/j.foodqual.2016.05.003.

A. Bozdoğan, B. Aksakal, U. Şahintürk, and Ö. Yargı, “Influence of heating on spectroscopic, mechanical, and thermal properties of reduced graphene oxide poly(vinyl alcohol) composite films,” J. Mol. Struct., vol. 1174, pp. 133–141, 72 2018, doi: 10.1016/j.molstruc.2018.06.011.

S. Kumar, S. Karthikeyan, and A. F. Lee, “g-C3N4-based nanomaterials for visible light-driven photocatalysis,” Catalysts, vol. 8, no. 2, 2018, doi: 10.3390/catal8020074.

P. J. M. Cordeiro-Junior, R. Gonçalves, T. T. Guaraldo, R. da Silva Paiva, E. C. Pereira, and M. R. de V. Lanza, “Oxygen reduction reaction: Semi-empirical quantum mechanical and electrochemical study of Printex L6 carbon black,” Carbon N. Y., vol. 156, pp. 1–9, 2020, doi: 10.1016/j.carbon.2019.09.036.

Y. Jeong et al., “Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A,” Chemosphere, vol. 238, p. 124559, 2020, doi: 10.1016/j.chemosphere.2019.124559.

M. Zhu, R. Ji, Z. Li, H. Wang, L. L. Liu, and Z. Zhang, “Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass,” Constr. Build. Mater., vol. 112, pp. 398–405, 2016, doi: 10.1016/j.conbuildmat.2016.02.183.

N. Ferronato, “Waste Mismanagement in Developing Countries : A Review of Global Issues,” 2019, doi: 10.3390/ijerph16061060.

H. Hettiarachchi, J. N. Meegoda, and S. Ryu, “Organic waste buyback as a viable method to enhance sustainable municipal solid waste management in developing countries,” Int. J. Environ. Res. Public Health, vol. 15, no. 11, pp. 1 15, 2018, doi: 10.3390/ijerph15112483.

O. K. M. Ouda, S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres, “Waste to energy potential: A case study of Saudi Arabia,” Renew. 73 Sustain. Energy Rev., vol. 61, pp. 328–340, 2016, doi: 10.1016/j.rser.2016.04.005.

Y. Sadef, A. S. Nizam, S. A. Batool, M. N. Chaudary, O. K. M. Ouda, Z. Z. Asam, K. Habib, M. Rehan & A. Demirbas, “Waste-to-energy and recycling value for developing integrated solid waste management plan in Lahore,” Energy Sources, Part B Econ. Plan. Policy, vol. 11, no. 7, pp. 569–579, 2016, doi: 10.1080/15567249.2015.1052595.

M. Sawadogo, S. Tchini Tanoh, S. Sidibé, N. Kpai, and I. Tankoano, “Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste,” J. Clean. Prod., vol. 195, pp. 1047–1056, 2018, doi: 10.1016/j.jclepro.2018.05.261.

A. Demirbas, “Biofuels sources, biofuel policy, biofuel economy and global biofuel projections,” Energy Convers. Manag., vol. 49, no. 8, pp. 2106–2116, 2008, doi: 10.1016/j.enconman.2008.02.020.

S. Soltanian, Mortaza Aghbashlo, Fatemeh Almasi, Homa Hosseinzadeh Bandbafha Abdul-Sattar Nizami, Yong Sik Ok Su Shiung Lam, Meisam Tabatabaei,“A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels,” Energy Convers. Manag., vol. 212, no. February, p. 112792, 2020, doi: 10.1016/j.enconman.2020.112792.

N. Bilandzija, Neven Voca, Barbara Jelcic,Vanja Jurisic, Ana Matin, Mateja Grubor, Tajana Kricka, “Evaluation of Croatian agricultural solid biomass energy potential,” Renew. Sustain. Energy Rev., vol. 93, no. December 2017, pp. 225–230, 2018, doi: 10.1016/j.rser.2018.05.040. 74

M. Erol, H. Haykiri-Acma, and S. Küçükbayrak, “Calorific value estimation of biomass from their proximate analyses data,” Renew. Energy, vol. 35, no. 1, pp. 170–173, 2010, doi: 10.1016/j.renene.2009.05.008.

M. Balat, “Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review,” Energy Convers. Manag., vol. 52, no. 2, pp. 858–875, 2011, doi: 10.1016/j.enconman.2010.08.013.

S. S. Hassan, G. A. Williams, and A. K. Jaiswal, “Emerging technologies for the pretreatment of lignocellulosic biomass,” Bioresour. Technol., vol. 262, no. April, pp. 310–318, 2018, doi: 10.1016/j.biortech.2018.04.099.

S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.

F. K. Kazi et al., “Techno-economic comparison of process technologies for biochemical ethanol production from corn stover,” Fuel, vol. 89, no. SUPPL. 1, pp. S20–S28, 2010, doi: 10.1016/j.fuel.2010.01.001.

T. R. Brown, R. Thilakaratne, R. C. Brown, and G. Hu, “Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing,” Fuel, vol. 106, no. 2013, pp. 463–469, 2013, doi: 10.1016/j.fuel.2012.11.029.

K. A. Karpov, “Development Trends of Global Energy Consumption,” Stud. Russ. Econ. Dev., vol. 10.1134/S1075700719010088. 30, no. 1, pp. 38–43, 2019, doi:

R. Pode, “Potential applications of rice husk ash waste from rice husk biomass 75 power plant,” Renew. Sustain. Energy Rev., vol. 53, pp. 1468–1485, 2016, doi: 10.1016/j.rser.2015.09.051.

F. Adam, H. Osman, and K. M. Hello, “The immobilization of 3-(chloropropyl)triethoxysilane onto silica by a simple one-pot synthesis,” Journal of Colloid and Interface Science, vol. 331, no. 1, pp. 143–147, 2009, doi: 10.1016/J.JCIS.2008.11.048 .