Vol 10 No 1 (2025): June (In Progress)
Clinical Research

Genotyping Staphylococcus aureus in Endocarditis Using Multilocus Sequence Typing
Genotipe Staphylococcus aureus pada Endokarditis Menggunakan Pengetikan Sekuens Multilokus


Fatima Rashid Mohan
Department of Pathological Analysis, College of Science, University of Thi-Qar, Thi-Qar, Iraq *

(*) Corresponding Author
Picture in here are illustration from public domain image or provided by the author, as part of their works
Published April 5, 2025
Keywords
  • Infective endocarditis (IE),
  • S.aureus, genotyping,
  • multilocus sequence typing,
  • biomarkers
How to Cite
Mohan, F. R. (2025). Genotyping Staphylococcus aureus in Endocarditis Using Multilocus Sequence Typing. Academia Open, 10(1), 10.21070/acopen.10.2025.10793. https://doi.org/10.21070/acopen.10.2025.10793

Abstract

Background: Infective endocarditis (IE) is a rare but life-threatening infection that can occur post-cardiac valve surgery, with Staphylococcus aureus (SAB) being the leading causative pathogen due to its virulence and resistance traits. Specific Background: Molecular typing methods like multilocus sequence typing (MLST) offer improved resolution in understanding SAB epidemiology compared to conventional culture-based techniques. Knowledge Gap: However, the clonal diversity and genetic lineages of SAB isolates associated with IE in regional healthcare settings remain underexplored, particularly in populations with low culture positivity. Aims: This study aimed to genotype SAB isolates from IE patients using MLST to investigate their strain-level diversity, clonal relationships, and antibiotic resistance profiles. Results: Among 281 blood samples, only 43 (15.3%) yielded bacterial growth, with 11 (25.6%) confirmed as SAB. MLST revealed genetic heterogeneity, identifying ST-1 (biofilm-associated), ST-21 (community-acquired), ST-215 (healthcare-related), and emerging regional clones ST-59 and ST-531. Novelty: This study presents the first molecular characterization of SAB in IE patients in this region, linking sequence types to clinical contexts. Implications: Findings underscore the utility of MLST in identifying transmission patterns, informing infection control strategies, and highlighting the need for ongoing molecular surveillance of multidrug-resistant SAB strains.

Highlights:

  1. Staphylococcus aureus causes infective endocarditis post-heart valve replacement surgery.
  2. Used MLST to genotype SAB; found ST-1, ST-21, ST-215.
  3. MLST reveals SAB diversity; aids targeted control of resistant regional strains.

Keywords: Infective endocarditis (IE), S.aureus, genotyping, multilocus sequence typing, biomarkers

Downloads

Metrics

Other format views
1

References

  1. J. B. Kim et al., “Surgical Outcomes of Infective Endocarditis Among Intravenous Drug Users,” The Journal of Thoracic and Cardiovascular Surgery, vol. 152, no. 3, pp. 832–841, Sep. 2016, doi: 10.1016/j.jtcvs.2016.02.072.
  2. Y. Sanaiha, R. Lyons, and P. Benharash, “Infective Endocarditis in Intravenous Drug Users,” Trends in Cardiovascular Medicine, vol. 30, no. 8, pp. 491–497, Oct. 2020, doi: 10.1016/j.tcm.2019.11.007.
  3. H. Asgeirsson, A. Thalme, and O. Weiland, “Staphylococcus aureus Bacteraemia and Endocarditis–Epidemiology and Outcome: A Review,” Infectious Diseases, vol. 50, no. 3, pp. 175–192, Mar. 2018, doi: 10.1080/23744235.2017.1392039.
  4. V. Hoerr et al., “S. aureus Endocarditis: Clinical Aspects and Experimental Approaches,” International Journal of Medical Microbiology, vol. 308, no. 6, pp. 640–652, Sep. 2018, doi: 10.1016/j.ijmm.2018.02.004.
  5. C. Schwarz et al., “Host–Pathogen Interactions of Clinical S. aureus Isolates to Induce Infective Endocarditis,” Virulence, vol. 12, no. 1, pp. 2073–2087, 2021, doi: 10.1080/21505594.2021.1960107.
  6. N. C. T. Dadi et al., “Impact of Healthcare-Associated Infections Connected to Medical Devices—An Update,” Microorganisms, vol. 9, no. 11, p. 2332, Nov. 2021, doi: 10.3390/microorganisms9112332.
  7. S. Aliyu et al., “Prevalence and Risk Factors for Bloodstream Infection Present on Hospital Admission,” Journal of Infection Prevention, vol. 19, no. 1, pp. 37–42, Jan. 2018, doi: 10.1177/1757177417720.
  8. L. W. Riley, “Laboratory Methods in Molecular Epidemiology: Bacterial Infections,” Microbiology Spectrum, vol. 6, no. 6, pp. 1–13, Dec. 2018, doi: 10.1128/microbiolspec.ame-0004-2018.
  9. C. D. Sibley, G. Peirano, and D. L. Church, “Molecular Methods for Pathogen and Microbial Community Detection and Characterization: Current and Potential Application in Diagnostic Microbiology,” Infection, Genetics and Evolution, vol. 12, no. 3, pp. 505–521, May 2012, doi: 10.1016/j.meegid.2013.01.009.
  10. N. Gohil et al., “Molecular Biology Techniques for the Identification and Genotyping of Microorganisms,” in Microbial Genomics in Sustainable Agroecosystems: Volume 1, Singapore: Springer, 2019, pp. 203–226, doi: 10.1007/978-981-13-8739-5_11.
  11. M. Mühling et al., “Improved Group-Specific PCR Primers for Denaturing Gradient Gel Electrophoresis Analysis of the Genetic Diversity of Complex Microbial Communities,” The ISME Journal, vol. 2, no. 4, pp. 379–392, Apr. 2008, doi: 10.1038/ismej.2007.97.
  12. A. Sanchini, “Recent Developments in Phenotypic and Molecular Diagnostic Methods for Antimicrobial Resistance Detection in Staphylococcus aureus: A Narrative Review,” Diagnostics, vol. 12, no. 1, p. 208, Jan. 2022, doi: 10.3390/diagnostics12010208.
  13. L. Overbergh et al., “Real-Time Polymerase Chain Reaction,” in Molecular Diagnostics, 1st ed., San Diego, CA: Academic Press, 2010, pp. 87–105, doi: 10.1038/s41598-018-26707-8.
  14. R. P. Viscidi and J. C. Demma, “Genetic Diversity of Neisseria gonorrhoeae Housekeeping Genes,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 197–204, Jan. 2003, doi: 10.1128/jcm.41.1.197-204.2003.
  15. C. A. Arias et al., “A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries,” Antimicrobial Agents and Chemotherapy, vol. 61, no. 10, p. e00816-17, Oct. 2017, doi: 10.1128/aac.00816-17.
  16. S. E. Boyd et al., “OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline,” Antimicrobial Agents and Chemotherapy, vol. 66, no. 8, p. e00216-22, Aug. 2022, doi: 10.1128/aac.00216-22.
  17. K. Bush and P. A. Bradford, “Epidemiology of β-Lactamase-Producing Pathogens,” Clinical Microbiology Reviews, vol. 33, no. 2, pp. 1–31, Apr. 2020, doi: 10.1128/cmr.00047-19.
  18. H. Chen et al., “The Global, Regional, and National Burden and Trends of Infective Endocarditis From 1990 to 2019: Results From the Global Burden of Disease Study 2019,” Frontiers in Medicine, vol. 9, p. 774224, Feb. 2022, doi: 10.3389/fmed.2022.774224.
  19. C.-W. Liu et al., “Evolution of Trimethoprim/Sulfamethoxazole Resistance in Shewanella algae From the Perspective of Comparative Genomics and Global Phylogenic Analysis,” Journal of Microbiology, Immunology and Infection, vol. 55, no. 6, pp. 1195–1202, Dec. 2022, doi: 10.1016/j.jmii.2021.09.014.
  20. D. C. de Souza et al., “Thymidine-Auxotrophic Staphylococcus aureus Small-Colony Variant Bacteremia in a Patient With Cystic Fibrosis,” Pediatric Pulmonology, vol. 55, no. 6, pp. 1388–1393, Jun. 2020, doi: 10.1002/ppul.24730.
  21. M. C. Enright et al., “Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus aureus,” J. Clin. Microbiol., vol. 38, no. 3, pp. 1008–1015, 2000, doi: 10.1128/jcm.38.3.1008-1015.2000.
  22. E. J. Feil et al., “eBURST: Inferring Patterns of Evolutionary Descent Among Clusters of Related Bacterial Genotypes From Multilocus Sequence Typing Data,” J. Bacteriol., vol. 186, no. 5, pp. 1518–1530, 2004, doi: 10.1128/jb.186.5.1518-1530.2004.
  23. V. G. Fowler et al., “Staphylococcus aureus Endocarditis: A Consequence of Medical Progress,” JAMA, vol. 293, no. 24, pp. 3012–3021, 2005, doi: 10.1001/jama.293.24.3012.
  24. A. P. Francisco et al., “Global Optimal eBURST Analysis of Multilocus Typing Data Using a Graphic Matroid Approach,” BMC Bioinformatics, vol. 10, p. 152, 2009, doi: 10.1186/1471-2105-10-152.
  25. G. Habib et al., “Clinical Presentation, Aetiology and Outcome of Infective Endocarditis. Results of the ESC-EORP EURO-ENDO (European Infective Endocarditis) Registry: A Prospective Cohort Study,” Eur. Heart J., vol. 40, no. 39, pp. 3222–3232, 2019, doi: 10.1093/eurheartj/ehz620.
  26. S. R. Harris et al., “Evolution of MRSA During Hospital Transmission and Intercontinental Spread,” Science, vol. 327, no. 5964, pp. 469–474, 2010, doi: 10.1126/science.1182395.
  27. N. L. Hiller and C. J. Orihuela, “Biological Puzzles Solved by Using Streptococcus pneumoniae: A Historical Review of the Pneumococcal Studies That Have Impacted Medicine and Shaped Molecular Bacteriology,” J. Bacteriol., vol. 206, no. 6, p. e00059-24, 2024, doi: 10.1128/jb.00059-24.
  28. K. Hiramatsu et al., “Vancomycin-Intermediate Resistance in Staphylococcus aureus,” J. Glob. Antimicrob. Resist., vol. 2, no. 4, pp. 213–224, 2014, doi: 10.1016/j.jgar.2014.04.006.
  29. A. Khan, W. R. Miller, and C. A. Arias, “Mechanisms of Antimicrobial Resistance Among Hospital-Associated Pathogens,” Expert Rev. Anti Infect. Ther., vol. 16, no. 4, pp. 269–287, 2018, doi: 10.1080/14787210.2018.1459894.
  30. K. L. LaPlante et al., “Re-Establishing the Utility of Tetracycline-Class Antibiotics for Current Challenges With Antibiotic Resistance,” Ann. Med., vol. 54, no. 1, pp. 1686–1700, 2022, doi: 10.1080/07853890.2022.2085881.
  31. A. Mellmann et al., “Based Upon Repeat Pattern (BURP): An Algorithm to Characterize the Long-Term Evolution of Staphylococcus aureus Populations Based on Spa Polymorphisms,” BMC Microbiol., vol. 7, p. 98, 2007, doi: 10.1186/1471-2180-7-98.
  32. D. R. Murdoch et al., “Clinical Presentation, Etiology, and Outcome of Infective Endocarditis in the 21st Century: The International Collaboration on Endocarditis–Prospective Cohort Study,” Arch. Intern. Med., vol. 169, no. 5, pp. 463–473, 2009, doi: 10.1001/archinternmed.2008.603.
  33. K. Palaiopanos et al., “Healthcare-Associated Infections and Antimicrobial Use in Acute Care Hospitals in Greece, 2022: Results of the Third Point Prevalence Survey,” Antimicrob. Resist. Infect. Control, vol. 13, no. 1, p. 11, 2024, doi: 10.1186/s13756-024-01367-8.
  34. Y. Panina et al., “Validation of Common Housekeeping Genes as Reference for qPCR Gene Expression Analysis During iPS Reprogramming Process,” Sci. Rep., vol. 8, no. 1, p. 8716, 2018, doi: 10.1038/s41598-018-26707-8.
  35. D. L. Paterson, “Resistance in Gram-Negative Bacteria: Enterobacteriaceae,” Am. J. Infect. Control, vol. 34, no. 5, Suppl. 1, pp. S20–S28, 2006, doi: 10.1016/j.ajic.2006.05.238.
  36. M. Pérez-Losada et al., “Pathogen Typing in the Genomics Era: MLST and the Future of Molecular Epidemiology,” Infect. Genet. Evol., vol. 16, pp. 38–53, 2013, doi: 10.1016/j.meegid.2013.01.009.
  37. A. J. Sabat et al., “Overview of Molecular Typing Methods for Outbreak Detection and Epidemiological Surveillance,” Euro Surveill., vol. 18, no. 4, p. 20380, 2013, doi: 10.2807/ese.18.04.20380-en.
  38. A. C. Schürch et al., “Whole Genome Sequencing Options for Bacterial Strain Typing and Epidemiologic Analysis Based on Single Nucleotide Polymorphism Versus Gene-By-Gene–Based Approaches,” Clin. Microbiol. Infect., vol. 24, no. 4, pp. 350–354, 2018, doi: 10.1016/j.cmi.2017.12.016.
  39. S. Schwarz, A. Loeffler, and K. Kadlec, “Bacterial Resistance to Antimicrobial Agents and Its Impact on Veterinary and Human Medicine,” Adv. Vet. Dermatol., vol. 8, pp. 95–110, 2017, doi: 10.1002/9781119278368.ch5.1.
  40. S. Y. C. Tong et al., “Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management,” Clin. Microbiol. Rev., vol. 28, no. 3, pp. 603–661, 2015, doi: 10.1128/cmr.00134-14.
  41. K. M. E. Turner et al., “Assessing the Reliability of eBURST Using Simulated Populations With Known Ancestry,” BMC Microbiol., vol. 7, p. 30, 2007, doi: 10.1186/1471-2180-7-30.
  42. A.-C. Uhlemann et al., “Molecular Tracing of the Emergence, Diversification, and Transmission of S. aureus Sequence Type 8 in a New York Community,” Proc. Natl. Acad. Sci. USA, vol. 111, no. 18, pp. 6738–6743, 2014, doi: 10.1073/pnas.1401006111.
  43. D. V. Volokhov et al., “Genetic Analysis of Housekeeping Genes of Members of the Genus Acholeplasma: Phylogeny and Complementary Molecular Markers to the 16S rRNA Gene,” Mol. Phylogenet. Evol., vol. 44, no. 2, pp. 699–710, 2007, doi: 10.1016/j.ympev.2006.12.001.
  44. B. Wang and T. W. Muir, “Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles,” Cell Chem. Biol., vol. 23, no. 2, pp. 214–224, 2016, doi: 10.1016/j.chembiol.2016.01.004.