- Precipitation,
- sewerage,
- urbanization,
- cable network,
- pipeline
- drains ...More
Copyright (c) 2025 Ismoil Xolboyevich Omonov, Dinora Olim qizi Hamdamova

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
General Background: Sustainable water and sanitation management is crucial in urban environments due to rapid urbanization and climate change, which strain underground engineering networks. Specific Background: The increasing frequency of extreme precipitation events and rising water demand necessitate advanced hydraulic modeling to optimize drainage and sewer systems. Knowledge Gap: Current methodologies lack accuracy in simulating flow dynamics, sediment accumulation, and energy losses in complex drainage networks, largely due to infrequent and costly CCTV inspections. Aims: This study aims to enhance hydraulic modeling accuracy by integrating real-world measurements with numerical simulations to assess system performance, optimize drainage efficiency, and mitigate flooding risks. Results: The findings highlight that pipe roughness, sediment deposition, and biofilm accumulation significantly alter hydraulic conditions over time. Regular monitoring and adaptive drainage designs are essential for improving system resilience and reducing maintenance costs. Novelty: This research underscores the importance of multi-purpose collectors and introduces a data-driven approach to drainage management, addressing limitations in existing models. Implications: The study provides critical insights for urban planners and engineers, advocating for smart sensor integration and predictive analytics to enable real-time monitoring and sustainable infrastructure development. Future research should incorporate climate projections and IoT-based monitoring for enhanced urban resilience.
Highlights:
- Challenge: Urbanization and climate change strain drainage and sewer systems.
- Solution: Integrating real-world data with simulations improves hydraulic modeling accuracy.
- Impact: Smart sensors and predictive analytics enhance drainage efficiency and resilience.
Keywords. Precipitation, sewerage, urbanization, cable network, pipeline, drains.
Downloads
Metrics
No metrics found.
References
- Z. Yazdanfar and A. Sharma, “Urban drainage system planning and design – challenges with climate change and urbanization: a review,” Water Sci. Technol., vol. 72, no. 2, pp. 165–179, May 2015, doi: 10.2166/wst.2015.207.
- “A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts.” Accessed: Feb. 28, 2025. [Online]. Available: https://www.mdpi.com/2073-4441/6/4/976
- H. Arisz and B. C. Burrell, “Urban Drainage Infrastructure Planning and Design Considering Climate Change,” in 2006 IEEE EIC Climate Change Conference, May 2006, pp. 1–9. doi: 10.1109/EICCCC.2006.277251.
- “Enhancing Underground Network Modeling for Climate Resilience | Elicit.” Accessed: Feb. 28, 2025. [Online]. Available: https://elicit.com/notebook/7947b8c6-a7fe-4c75-a7e6-ec53c608b9d6#1828479ece90784ac04d64c0a308aeee
- R. P. Porro, J. O´Donovan, and Z. Li, “Impact of climate change on underground transport infrastructure,” IOP Conf. Ser. Earth Environ. Sci., vol. 1337, no. 1, p. 012029, May 2024, doi: 10.1088/1755-1315/1337/1/012029.
- S. Hesarkazzazi, M. Hajibabaei, K. Diao, and R. Sitzenfrei, “Implication of Different Pipe-Sizing Strategies for the Resilience of Stormwater Networks,” pp. 244–252, Jun. 2021, doi: 10.1061/9780784483466.022.
- A. Dastgir, S. Hesarkazzazi, M. Oberascher, M. Hajibabaei, and R. Sitzenfrei, “Graph method for critical pipe analysis of branched and looped drainage networks,” Water Sci. Technol., vol. 87, no. 1, pp. 157–173, Dec. 2022, doi: 10.2166/wst.2022.413.
- A. Assad and A. Bouferguene, “Resilience assessment of water distribution networks – Bibliometric analysis and systematic review,” J. Hydrol., vol. 607, p. 127522, Apr. 2022, doi: 10.1016/j.jhydrol.2022.127522.
- “A multi-solver simulation environment for resilience analysis of drinking water and wastewater networks | Water Practice & Technology | IWA Publishing.” Accessed: Feb. 28, 2025. [Online]. Available: https://iwaponline.com/wpt/article/19/9/3763/104283/A-multi-solver-simulation-environment-for
- Vasiliy Kosinov, Yuliia Trach, and Roman Trach, “Analysis of the construction of nodes of a water pipeline network and modeling of planned overall dimensions of its working chambers,” ACTA Sci. Pol. - Archit. Bud., vol. 21, no. 1, Jun. 2023, doi: 10.22630/ASPA.2022.21.1.8.
- В. B. Веременюк, В. В. Ивашечкин, and В. В. Крицкая, “Математические модели скважинных водозаборов с разветвленной и кольцевой схемами соединения сборных водоводов,” Энергетика Известия Высших Учебных Заведений И Энергетических Объединений СНГ, vol. 63, no. 6, Art. no. 6, Dec. 2020, doi: 10.21122/1029-7448-2020-63-6-563-580.
- H. Volodymyr and M. Dmytro, “Mathematical model of the topological structure of the urban water supply network,” Системні Технології, vol. 1, no. 150, Art. no. 150, Apr. 2024, doi: 10.34185/1562-9945-1-150-2024-01.
- V. N. Suponyev, “ВИЗНАЧЕННЯ АЛГОРИТМУ ВИБОРУ ТЕХНОЛОГІЙ ТА РОБОЧОГО ОБЛАДНАННЯ ДЛЯ ЕФЕКТИВНОГО УТВОРЕННЯ СВЕРДЛОВИН ПІД ЧАС ПРОКЛАДАННЯ ПІДЗЕМНИХ КОМУНІКАЦІЙ,” Вісник Харківського Національного Автомобільно-Дорожнього Університету, vol. 2, no. 88, Art. no. 88, 2020, doi: 10.30977/BUL.2219-5548.2020.88.2.93.
- V. Shcherbakov, A. Akulshin, K. Chizhik, and M. Tolstoy, “Design of interacting wells for optimization of investments and operating costs while constructing water-diverting structures,” MATEC Web Conf., vol. 251, p. 03037, 2018, doi: 10.1051/matecconf/201825103037.
- “Control of BTEX Migration Using a Biologically Enhanced Permeable Barrier - Borden - 1997 - Groundwater Monitoring & Remediation - Wiley Online Library.” Accessed: Feb. 28, 2025. [Online]. Available: https://ngwa.onlinelibrary.wiley.com/doi/10.1111/j.1745-6592.1997.tb01186.x