Skip to main navigation menu Skip to main content Skip to site footer

Clinical Research

Vol 9 No 2 (2024): December

Assessing Zoonotic Bacterial Pathogens: Risks and Public Health Implications from Livestock in Residential Areas of Mosul
Menilai Patogen Bakteri Zoonosis: Risiko dan Implikasi Kesehatan Masyarakat dari Ternak di Daerah Pemukiman di Mosul



(*) Corresponding Author
DOI
https://doi.org/10.21070/acopen.9.2024.10380
Published
December 7, 2024

Abstract

Despite the increasing frequency of cattle in residential areas, particularly in residential neighbourhoods, little is known about the potential health hazards associated with their presence. This cross-sectional investigation examined the incidence of zoonotic agents in 108 cattle samples collected from various locations around Mosul city. The standardized medical examination and livestock owner interviews occurred from October 4 to December 18, 2024. We identified bacterial pathogens in samples from each animal's pharynx, nose, ear, mouth, and faeces. We determined that all of the cattle were in excellent health. Out of 108 cattle, 84 (or 78% of the total) tested positive for zoonotic agents. The principal pathogen was ESBL Escherichia coli (E. coli) isolated from 51 (60.7%) faecal samples. We isolated extended-spectrum beta-lactamase C. difficil organisms from 16 cows (19%). We isolated MRSA from 12 (14.3%), VRE from 3 (3.6%), and Salmonella spp. from 2 (2.4%) of the cows. ESBL E. coli showed significant resistance, particularly to amoxicillin (86.3%) and gentamicin (78.4%). Clostridium difficile exhibited complete resistance to amoxicillin (100%), while MRSA demonstrated full resistance to several antibiotics, including gentamicin and vancomycin. VRE and Salmonella spp. also displayed high resistance rates.

Highlights:

  1. Zoonotic Agents in Cattle: 78% tested positive in residential areas.
  2. Pathogen Resistance: ESBL E. coli, MRSA, and others showed high resistance.
  3. Health Hazards: Antibiotic-resistant bacteria pose significant public health risks.

Keywords: Zoonotic, bacterial pathogens, public health, cattle, multi-drug resistant

 

References

  1. . C. J. McDaniel, D. M. Cardwell, R. B. Moeller, and G. C. Gray, “Humans and Cattle: A Review of Bovine Zoonoses,” Vector-Borne and Zoonotic Diseases, vol. 14, no. 1, pp. 1–19, Dec. 2013, doi: 10.1089/vbz.2012.1164.
  2. . B. A. Jones et al., “Zoonosis emergence linked to agricultural intensification and environmental change,” Proceedings of the National Academy of Sciences, vol. 110, no. 21, pp. 8399–8404, May 2013, doi: 10.1073/pnas.1208059110.
  3. . E. Leahy, F. Mutua, D. Grace, E. Lambertini, and L. F. Thomas, “Foodborne zoonoses control in low- and middle-income countries: Identifying aspects of interventions relevant to traditional markets which act as hurdles when mitigating disease transmission,” Frontiers in Sustainable Food Systems, vol. 6, Dec. 2022, doi: 10.3389/fsufs.2022.913560.
  4. . S. Abraham et al., “First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals,” Journal of Global Antimicrobial Resistance, vol. 3, no. 4, pp. 273–277, Sep. 2015, doi: 10.1016/j.jgar.2015.08.002.
  5. . M. D. Sobsey et al., “Pathogens in Animal Wastes and the Impacts of Waste Management Practices on Their Survival, Transport and Fate.”
  6. . J. Venglovsky, N. Sasakova, and I. Placha, “Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application,” Bioresource Technology, vol. 100, no. 22, pp. 5386–5391, Apr. 2009, doi: 10.1016/j.biortech.2009.03.068.
  7. . J. Asante, A. Noreddin, and M. E. E. Zowalaty, “Systematic Review of Important Bacterial Zoonoses in Africa in the Last Decade in Light of the ‘One Health’ Concept,” Pathogens, vol. 8, no. 2, p. 50, Apr. 2019, doi: 10.3390/pathogens8020050.
  8. . D. Kasir et al., “Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region,” Diseases, vol. 11, no. 1, p. 39, Mar. 2023, doi: 10.3390/diseases11010039.
  9. . S. Barrak, O. A. Saeed, and M. Mohammed, “Zoonotic Diseases in the eastern region of the Iraqi capital, between 2010-2016,” IOP Conference Series Earth and Environmental Science, vol. 779, no. 1, p. 012008, Jun. 2021, doi: 10.1088/1755-1315/779/1/012008.
  10. . R. S. Miller, M. L. Farnsworth, and J. L. Malmberg, “Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States,” Preventive Veterinary Medicine, vol. 110, no. 2, pp. 119–132, Dec. 2012, doi: 10.1016/j.prevetmed.2012.11.021.
  11. . M. N. Seleem, S. M. Boyle, and N. Sriranganathan, “Brucellosis: A re-emerging zoonosis,” Veterinary Microbiology, vol. 140, no. 3–4, pp. 392–398, Jun. 2009, doi: 10.1016/j.vetmic.2009.06.021.
  12. . L. Sun et al., “Low prevalence of mobilized resistance genes blaNDM, mcr-1, and tet(X4) in Escherichia coli from a hospital in China,” Frontiers in Microbiology, vol. 14, May 2023, doi: 10.3389/fmicb.2023.1181940.
  13. . C. L. Gyles, “Shiga toxin-producing Escherichia coli: An overview1,” Journal of Animal Science, vol. 85, no. suppl_13, pp. E45–E62, Feb. 2007, doi: 10.2527/jas.2006-508.
  14. . C. L. Mayer, C. S. Leibowitz, S. Kurosawa, and D. J. Stearns-Kurosawa, “Shiga Toxins and the Pathophysiology of Hemolytic Uremic Syndrome in Humans and Animals,” Toxins, vol. 4, no. 11, pp. 1261–1287, Nov. 2012, doi: 10.3390/toxins4111261.
  15. . M. A. Geresu and S. Regassa, “Escherichia coli O157 : H7 from Food of Animal Origin in Arsi: Occurrence at Catering Establishments and Antimicrobial Susceptibility Profile,” The Scientific World JOURNAL, vol. 2021, pp. 1–10, Mar. 2021, doi: 10.1155/2021/6631860.
  16. . García and J. G. Fox, “A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts,” Comparative Medicine, vol. 71, no. 1, pp. 3–45, Jan. 2021, doi: 10.30802/aalas-cm-20-000054.
  17. . J. J. Carrique-Mas and J. E. Bryant, “A Review of Foodborne Bacterial and Parasitic Zoonoses in Vietnam,” EcoHealth, vol. 10, no. 4, pp. 465–489, Oct. 2013, doi: 10.1007/s10393-013-0884-9.
  18. . 1. Moriyón, J. M. Blasco, J. J. Letesson, F. De Massis, and E. Moreno, “Brucellosis and One Health: Inherited and Future Challenges,” Microorganisms, vol. 11, no. 8, p. 2070, Aug. 2023, doi: 10.3390/microorganisms11082070.
  19. . H. Ellwanger, A. B. G. Da Veiga, V. De Lima Kaminski, J. M. Valverde-Villegas, A. W. Q. De Freitas, and J. A. B. Chies, “Control and prevention of infectious diseases from a One Health perspective,” Genetics and Molecular Biology, vol. 44, no. 1 suppl 1, Jan. 2021, doi: 10.1590/1678-4685-gmb-2020-0256.
  20. . E. Horefti, “The Importance of the One Health Concept in Combating Zoonoses,” Pathogens, vol. 12, no. 8, p. 977, Jul. 2023, doi: 10.3390/pathogens12080977.
  21. . M. P. Muehlenbein, “Human-Wildlife Contact and Emerging Infectious Diseases,” in Springer eBooks, 2012, pp. 79–94. doi: 10.1007/978-94-007-4780-7_4.
  22. . M. A. Kalkhan, “Environmental Decision-Making within a Recovering War Zone: The Republic of Iraq,” in CRC Press eBooks, 2019, pp. 33–56. doi: 10.1201/9781315166827-2.
  23. . M. Barrett, T. A. Bouley, A. H. Stoertz, and R. W. Stoertz, “Integrating a One Health approach in education to address global health and sustainability challenges,” 2011. https://www.semanticscholar.org/paper/Integrating-a-One-Health-approach-in-education-to-Barrett-Bouley/37f335dbed3003e7bde932f2374cd1b3c8d2e4f6
  24. . W. A. Gebreyes et al., “The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings,” PLoS Neglected Tropical Diseases, vol. 8, no. 11, p. e3257, Nov. 2014, doi: 10.1371/journal.pntd.0003257.
  25. . P. A. Kazerooni, M. Nejat, M. Akbarpoor, Z. Sedaghat, and M. Fararouei, “Underascertainment, underreporting, representativeness and timeliness of the Iranian communicable disease surveillance system for tuberculosis,” Public Health, vol. 171, pp. 50–56, May 2019, doi: 10.1016/j.puhe.2019.03.008.
  26. . M. M. Islam et al., “Rodent Ectoparasites in the Middle East: A Systematic Review and Meta-Analysis,” Pathogens, vol. 10, no. 2, p. 139, Jan. 2021, doi: 10.3390/pathogens10020139.
  27. . M. E. J. Woolhouse, D. T. Haydon, and R. Antia, “Emerging pathogens: the epidemiology and evolution of species jumps,” Trends in Ecology & Evolution, vol. 20, no. 5, pp. 238–244, Mar. 2005, doi: 10.1016/j.tree.2005.02.009.
  28. . V. Gautam et al., “Molecular characterization of extended-spectrum β-lactamases among clinical isolates of Escherichia coli & Klebsiella pneumoniae: A multi-centric study from tertiary care hospitals in India,” The Indian Journal of Medical Research, vol. 149, no. 2, p. 208, Jan. 2019, doi: 10.4103/ijmr.ijmr_172_18.
  29. . M. Al-Rudha, N. K. Khalil and N. A. Altaai “Evaluation of bacterial contaminants and heavy metals in cow and buffalo raw milk sold in Baghdad governorate,” Iraqi Journal of Veterinary Sciences, vol. 35, no. 2, Art. no. 101–105, Nov. 2021.
  30. . H. A. J. Gharban and A. A. Yousif, “Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq,” The Iraqi Journal of Veterinary Medicine, vol. 44, no. (E0), pp. 42–50, Dec. 2020, doi: 10.30539/ijvm.v44i(e0).1020.
  31. . H. Yue, B. Zhang, X. Zhu, H. Zhang, and C. Tang, “Comparison of Culture Methods for Isolation of Salmonella in Yak Fecal Samples,” Indian Journal of Microbiology, vol. 54, no. 2, pp. 223–226, Aug. 2013, doi: 10.1007/s12088-013-0423-y.
  32. . Central Institute of Fisheries Technology, “Biochemical and molecular investigations on Salmonella serovars from seafood,” Mar. 01, 2009. https://dyuthi.cusat.ac.in/xmlui/handle/purl/2879
  33. . M. Wren, “Clostridium difficile Isolation and Culture Techniques,” Methods in Molecular Biology, pp. 39–52, Jan. 2010, doi: 10.1007/978-1-60327-365-7_3.
  34. . P. H. Gilligan, “Optimizing the Laboratory Diagnosis of Clostridium difficile Infection,” Clinics in Laboratory Medicine, vol. 35, no. 2, pp. 299–312, Mar. 2015, doi: 10.1016/j.cll.2015.02.003.
  35. . M. M. A. A. El-Gendy, Z. K. Mohamed, N. Z. Hekal, F. M. Ali, and A. E. M. Yousef, “Production of bioactive metabolites from different marine endophytic Streptomyces species and testing them against methicillin-resistant Staphylococcus aureus (MRSA) and cancer cell lines,” BioTechnologia, vol. 99, no. 1, pp. 13–35, Jan. 2018, doi: 10.5114/bta.2018.73559.
  36. . D. K. Chen, L. Pearce, A. McGeer, D. E. Low, and B. M. Willey, “Evaluation of d -Xylose and 1% Methyl-α- d -Glucopyranoside Fermentation Tests for Distinguishing Enterococcus gallinarum from Enterococcus faecium,” Journal of Clinical Microbiology, vol. 38, no. 10, pp. 3652–3655, Oct. 2000, doi: 10.1128/jcm.38.10.3652-3655.2000.
  37. . P. A. Chapman, D. J. Wright, and C. A. Siddons, “A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli 0157 from bovine faeces,” Journal of Medical Microbiology, vol. 40, no. 6, pp. 424–427, Jun. 1994, doi: 10.1099/00222615-40-6-424.
  38. . A. Tutenel, “Sensitivity of methods for the isolation of Escherichia coli O157 from naturally infected bovine faeces,” Veterinary Microbiology, vol. 94, no. 4, pp. 341–346, Jun. 2003, doi: 10.1016/s0378-1135(03)00121-4.
  39. . X. Yang et al., “Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam,” BMC Microbiology, vol. 19, no. 1, Nov. 2019, doi: 10.1186/s12866-019-1613-5.
  40. . J. Biemer “Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method,” PubMed, Apr. 01, 1973. https://pubmed.ncbi.nlm.nih.gov/4575155.
  41. . W. Fothergill, M. G. Rinaldi, and D. A. Sutton, “Antifungal Susceptibility Testing,” Infectious Disease Clinics of North America, vol. 20, no. 3, pp. 699–709, Sep. 2006, doi: 10.1016/j.idc.2006.06.008.
  42. . S. L. Checkley, J. R. Campbell, M. Chirino-Trejo, E. D. Janzen, and C. L. Waldner, “Associations between antimicrobial use and the prevalence of antimicrobial resistance in fecal Escherichia coli from feedlot cattle in western Canada,” Aug. 01, 2010. https://pmc.ncbi.nlm.nih.gov/articles/PMC2905004/
  43. . A. Müller, R. Stephan, and M. Nüesch-Inderbinen, “Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans,” The Science of the Total Environment, vol. 541, pp. 667–672, Oct. 2015, doi: 10.1016/j.scitotenv.2015.09.135.
  44. . T. Khishigtuya, H. Matsuyama, K. Suzuki, T. Watanabe, and M. Nishiyama, “Prevalence of Antibiotic-Resistant Escherichia coli Isolated from Beef Cattle and Dairy Cows in a Livestock Farm in Yamagata, Japan,” Microorganisms, vol. 12, no. 7, p. 1342, Jun. 2024, doi: 10.3390/microorganisms12071342.
  45. . J. S. Weese, “Clostridium (Clostridioides) difficile in animals,” Journal of Veterinary Diagnostic Investigation, vol. 32, no. 2, pp. 213–221, Jan. 2020, doi: 10.1177/1040638719899081.
  46. . J. McCarthy, J. A. Lindsay, and A. Loeffler, “Are all meticillin‐resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA,” Veterinary Dermatology, vol. 23, no. 4, p. 267, Jul. 2012, doi: 10.1111/j.1365-3164.2012.01072.x.
  47. . C. Klare, C. Konstabel, D. Badstübner, G. Werner, and W. Witte, “Occurrence and spread of antibiotic resistances in Enterococcus faecium,” International Journal of Food Microbiology, vol. 88, no. 2–3, pp. 269–290, Sep. 2003, doi: 10.1016/s0168-1605(03)00190-9.
  48. . M. Mbindyo, G. C. Gitao, P. J. Plummer, B. W. Kulohoma, C. M. Mulei, and R. Bett, “Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya,” Antibiotics, vol. 10, no. 7, p. 772, Jun. 2021, doi: 10.3390/antibiotics10070772.
  49. . S. E. Majowicz et al., “Global Incidence of Human Shiga Toxin–ProducingEscherichia coliInfections and Deaths: A Systematic Review and Knowledge Synthesis,” Foodborne Pathogens and Disease, vol. 11, no. 6, pp. 447–455, Apr. 2014, doi: 10.1089/fpd.2013.1704.
  50. . A. Islam et al., “Prevalence and Genetic Characterization of Shiga Toxin-Producing Escherichia coli Isolates from Slaughtered Animals in Bangladesh,” Applied and Environmental Microbiology, vol. 74, no. 17, pp. 5414–5421, Jul. 2008, doi: 10.1128/aem.00854-08.
  51. . D. Belina, Y. Hailu, T. Gobena, T. Hald, and P. M. K. Njage, “Prevalence and epidemiological distribution of selected foodborne pathogens in human and different environmental samples in Ethiopia: a systematic review and meta-analysis,” One Health Outlook, vol. 3, no. 1, Sep. 2021, doi: 10.1186/s42522-021-00048-5.
  52. . D. R. Knight and T. V. Riley, “Genomic Delineation of Zoonotic Origins of Clostridium difficile,” Frontiers in Public Health, vol. 7, Jun. 2019, doi: 10.3389/fpubh.2019.00164.
  53. . García-Álvarez et al., “Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study,” The Lancet Infectious Diseases, vol. 11, no. 8, pp. 595–603, Jun. 2011, doi: 10.1016/s1473-3099(11)70126-8.
  54. . G. Li, M. J. Walker, and D. M. P. De Oliveira, “Vancomycin Resistance in Enterococcus and Staphylococcus aureus,” Microorganisms, vol. 11, no. 1, p. 24, Dec. 2022, doi: 10.3390/microorganisms11010024.
  55. . A. Melese, C. Genet, and T. Andualem, “Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis,” BMC Infectious Diseases, vol. 20, no. 1, Feb. 2020, doi: 10.1186/s12879-020-4833-2.
  56. . S. Kariuki et al., “Typhoid in Kenya Is Associated with a Dominant Multidrug-Resistant Salmonella enterica Serovar Typhi Haplotype That Is Also Widespread in Southeast Asia,” Journal of Clinical Microbiology, vol. 48, no. 6, pp. 2171–2176, Apr. 2010, doi: 10.1128/jcm.01983-09.
  57. . World Health Organization, “WHO Initiative to Estimate the Global Burden of Foodborne Diseases,” 2014. [Online]. Available: https://iris.who.int/bitstream/handle/10665/159844/9789241507950_eng.pdf

Downloads

Download data is not yet available.