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Abstract 

 
General Background: Orbital elements constitute the fundamental framework for describing and predicting the 

motion of natural and artificial celestial bodies in celestial mechanics and astrophysics. Specific Background: While 

classical Keplerian elements adequately represent ideal two-body motion, real orbital dynamics are influenced by 

gravitational perturbations, non-conservative forces, numerical propagation requirements, and emerging data-driven 

techniques. Knowledge Gap: A coherent synthesis that integrates classical perturbation theory, advanced numerical 

methods, and recent machine learning applications across both astrodynamics and astrophysical contexts remains 

limited. Aims: This review aims to systematically examine the development, theoretical foundations, perturbative 

evolution, computational propagation methods, and modern AI-assisted approaches to orbital element analysis. 

Results: The review demonstrates that combining analytical theory with high-fidelity numerical and machine learning 

models improves orbit prediction accuracy and robustness. Novelty: It provides an integrated perspective linking 

traditional celestial mechanics with contemporary AI-based methodologies. Implications: The findings support 

enhanced orbit determination, space situational awareness, and astrophysical modeling of satellites, exoplanets, and 

small bodies. 

 

Keywords : Orbital Elements, Celestial Mechanics, Perturbation Theory, Machine Learning Orbit 

Prediction, Astrophysical Dynamics 

 

 Highlight : 

Perturbations from non-spherical gravity, third-body effects, and drag significantly alter orbital 

dynamics. 

Machine learning enhances orbit prediction accuracy, especially for sparse observations and 

disturbed trajectories. 

Proper elements enable long-term stability analysis for asteroids and co-orbital body classification.. 
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Introduction 

The six Keplerian orbital elements: semi-major axis (a), eccentricity (e), inclination (i), longitude of the ascending node (Ω), argument of pericenter 

(ω), and mean anomaly (M) are sufficient to determine an orbit in the two-body model uniquely [8], [19]. But effects such as the Earth's shape 

(J2) and third body forces, together with non-conservative forces like atmosphere drag and solar radiation pressure, affect orbital dynamics in 

reality [12], [24]. It is helpful to know about all these forces while executing satellite missions, Space Situational Awareness, and research related 

to exoplanets and small bodies in the fields of astrophysics [26], [62]. 

The aim of this review is to describe the development and use of orbital parameters in celestial mechanics, emphasize perturbation theory, address 

modern computational methods such as using ML for orbit prediction, and describe astrophysical applications. 

 Classical Orbital Elements and Theoretical Bases 

The classical elements result from solutions of Newton's two-body problem with a central gravitation force [19], [20]. Other solutions include 

proper elements, which remain constants over a secular timescale, and have numerous applications within asteroid mechanics [9], [14]. 

Mathematical form solutions of these elements allow respectively the investigation of secular changes, how [{[. Internal Forced menstrual cycles 

and]] resonance phenomena, as well as stable solutions of artificial satellites as well as celestial bodies [18], [21]. 

Classical perturbation theories, such as the Lagrange planetary equations, form the tool within which the expressions for time derivatives of the 

celestial mechanical elements with respect to the disturbing forces are found [23], [12]. 

Perturbation Theory and Secular Evolution 

The non-central disturbances cause a systematic evolution of the orbital parameters. The main disturbing forces are: 

Earth oblateness (J2), which affects the node precession and perigee rotation [12], [33] 

Third body effects of gravitation from the Moon, the Sun, and the planets, which play a role in high orbits around the Earth and in planetary 

mechanics [25], [41] 

Resonances, mean-motion as well as secular, affecting the orbital stability on a long-term basis [31], [34]. 

Kozai-Lidov mechanism, which leads to periodic exchange between the inclination and the eccentricity of the 

Some analytical and semi-analytical perturbative methods have been extended to treat such effects using higher-order approximations, which 

have formed the rationale for satellite missions as well as studies of celestial mechanics [23], [35], [38]. 

Numerical Propagation Methods 

Numerical integration becomes a must when the problem becomes intractable analytically. The integration techniques are:  

Runge-Kutta method and multi-step method for short-term propagation [41], [45 

Symplectic and variational integrators that preserve energy and phase space properties in long-term simulations [46, 48]. 

Those involving hybrid analytical-numerical schemes which combine the secular theory with fast corrective algorithms to improve precision and 

computational efficiency [49], [50]. 

Orbit propagation with a high degree of fidelity includes models for atmospheric drag, solar radiation pressure, and non-uniform gravity, which 

are critical for precise solutions in SSA and Orbital Debris analysis problems [12], [51]. 

 Orbit Determination and Space Situational Awareness 

Orbit Determination (OD) is a data-driven effort used to deduce the orbital elements in order to make future predictions. The classic methods 

used for this are: 

Least squares fitting of tracking data [53], [54]. 

Kalman filtering and batch processing [55], [56]. 

Recent work combines machine learning algorithms in overcoming the limitations of orbit predictions by making them more robust, especially 

when there are sparse observations or highly disturbed orbits [33], [57], [58]. Machine learning methods make use of previous TLE and use 

environmental models in making predictions more accurate, especially in the case of LEO and MEO satellites [45], [51]. 

Applications of Machine Learning and AI in Orbital Prediction 

Machine learning techniques are being found as additional means of orbit prediction tools: 

Supervised machine learning algorithms (such as neural networks and random forests) can predict evolutions of orbital elements based on past 

observations [45], [51]. 

Hybrid models couple physics-based propagation with corrective layers of ML to enhance long-term predictions [57], [60]. 

Data-driven anomaly detection finds unusual orbits, and this is very effective for space situational awareness and collision avoidance systems [61], 

[62]. 

The satellite orbit of the Earth and the orbit of exoplanets have established the utility of AI/ML models in upgrading conventional models [62], 

[64]. 

Astrophysical Applications: Exoplanets and Small Bodies 

Orbital elements are requisite in the understanding of exoplanetary systems and small-body dynamics: 
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Keplerian and perturbed elements in exoplanet orbit characterization constrain system architecture from transit and radial velocity data [62, 63, 

65]. 

Co-orbital and Trojan asteroid studies utilize proper elements to classify long-term stability and resonance behavior [9], [26], [70]. 

The combination of high-fidelity numerical simulations with AI-based classification can, therefore, predict orbital evolution in complex multi-

body systems [66], [69]. 

Challenges and Future Directions 

Key challenges remain in: 

Quantification of uncertainty in orbits highly perturbed [33], [50]. 

Integrating hybrid physics–ML models for real-time orbit prediction [45], [57]. 

Long-term dynamical modeling of multibody systems in exoplanetary contexts [62], [64]. 

Future research will likely be devoted to an integrated effort of analytical theory, high-fidelity simulations, and data-driven methods to advance 

orbital prediction and understanding in celestial mechanics [69], [70]. 

Conclusion 

Orbital elements are still the backbone of celestial mechanics and astrophysics, acting as an interface between classical analytical theory and 

modern computational techniques. Perturbation theory, numerical propagation, and AI/ML methods improve our capability in orbit prediction 

and analysis for both artificial satellites and astrophysical bodies. With respect to the basics of classical methods, the implementation of modern 

innovations guarantees both accuracy and applicability for contemporary research and space mission purposes 
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