

Academia Open

By Universitas Muhammadiyah Sidoarjo

Table Of Contents

Journal Cover	1
Author[s] Statement	3
Editorial Team	4
Article information	5
Check this article update (crossmark)	5
Check this article impact.....	5
Cite this article.....	5
Title page	6
Article Title.....	6
Author information	6
Abstract	6
Article content	7

Originality Statement

The author[s] declare that this article is their own work and to the best of their knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the publication of any other published materials, except where due acknowledgement is made in the article. Any contribution made to the research by others, with whom author[s] have work, is explicitly acknowledged in the article.

Conflict of Interest Statement

The author[s] declare that this article was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright Statement

Copyright © Author(s). This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at <http://creativecommons.org/licenses/by/4.0/legalcode>

Academia Open

Vol. 10 No. 2 (2025): December
DOI: 10.21070/acopen.10.2025.13054

EDITORIAL TEAM

Editor in Chief

Mochammad Tanzil Multazam, Universitas Muhammadiyah Sidoarjo, Indonesia

Managing Editor

Bobur Sobirov, Samarkand Institute of Economics and Service, Uzbekistan

Editors

Fika Megawati, Universitas Muhammadiyah Sidoarjo, Indonesia

Mahardika Darmawan Kusuma Wardana, Universitas Muhammadiyah Sidoarjo, Indonesia

Wiwit Wahyu Wijayanti, Universitas Muhammadiyah Sidoarjo, Indonesia

Farkhod Abdurakhmonov, Silk Road International Tourism University, Uzbekistan

Dr. Hindarto, Universitas Muhammadiyah Sidoarjo, Indonesia

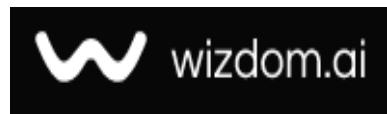
Evi Rinata, Universitas Muhammadiyah Sidoarjo, Indonesia

M Faisal Amir, Universitas Muhammadiyah Sidoarjo, Indonesia

Dr. Hana Catur Wahyuni, Universitas Muhammadiyah Sidoarjo, Indonesia


Complete list of editorial team ([link](#))

Complete list of indexing services for this journal ([link](#))


How to submit to this journal ([link](#))

Article information


Check this article update (crossmark)

Check this article impact (*)

Save this article to Mendeley

(*) Time for indexing process is various, depends on indexing database platform

Method Of Using a Rheological Model in Studying the Process of Compensation of Subgrade Soils with A Vibrating Roller

Xankelov Tavbay Qarshievich, xankelovt9@gmail.com,(1)

Injiniring technologies machine Department, Tashkent State Transport University, Republic of Uzbekistan, Uzbekistan

Komilov Samandar Iskandarovich, xankelovt9@gmail.com,(2)

Injiniring technologies machine Department, Tashkent State Transport University, Republic of Uzbekistan, Uzbekistan

Hudaykulov Rashidbek Mansurjonovich, xankelovt9@gmail.com,(3)

Survey and design of automobile roads Department, Tashkent State Transport University, Republic of Uzbekistan, Uzbekistan

Musirov Makhmarajab Uralovich, xankelovt9@gmail.com,(4)

Department of "Mathematics", Tashkent International University of Financial Management and Technology, Republic of Uzbekistan, Uzbekistan

⁽¹⁾ Corresponding author

Abstract

General Background: Effective soil compaction is fundamental to the stability and durability of road infrastructure, requiring accurate modeling of soil–machine interaction. **Specific Background:** Rheological models have become essential tools for describing elastic, viscous, and plastic behaviors that emerge when vibrating rollers interact with diverse soils, including saline subgrade materials. **Knowledge Gap:** Existing studies have not fully integrated multi-zone rheological behavior into a unified analytical model capable of characterizing deformation dynamics under real vibration loading. **Aims:** This study aims to develop an improved multi-mass rheological model that captures the elastic, viscous, and plastic responses of soils during roller compaction and to derive analytical expressions for predicting deformation characteristics. **Results:** The research presents a three-mass rheological system incorporating Hooke, Newton, and Saint-Venant elements, derives coupled differential equations for soil–roller interaction, and proposes closed-form static and dynamic solutions for displacement and vibration response. The model predicts system stability, resonance susceptibility, damping behavior, and deformation under varying excitation frequencies. **Novelty:** The study integrates soil layer properties into a multi-zone rheological framework, offering a more comprehensive representation of compaction mechanics than prior single-zone or simplified models. **Implications:** The findings provide a scientific basis for optimizing roller parameters, preventing resonance, improving compaction uniformity, and enhancing predictive simulations in road construction engineering.

Highlight :

- The study explains how rheological models represent elastic, viscous, and plastic behavior during roller–soil interaction for more accurate compaction analysis.
- Various models—Hooke, Newton, Maxwell, Kelvin, and Bingham—are applied to describe soil deformation under dynamic loading.
- A three-mass rheological system is developed to predict vibration stability, resonance risk, and soil response during compaction..

Published date: 2025-12-11

Introduction

In the economy of each state, transport facilities and communication networks (railways, highways and aviation, airfield facilities) are of great importance. Because technological processes at each stage of industry and production are closely related to these areas. In this regard, highways and their infrastructure play a major role in the implementation of logistics services, including the transportation of people, as well as the timely delivery of goods and materials to their intended destination. This, in turn, increases the requirements for road structure elements and increases attention to the quality of technological processes carried out in each layer of soil, as well as the efficiency of the use of machines [1],[2].

The construction of highways is multi-stage, and various machines and mechanisms are used depending on the tasks of the work to be performed.

Including:

- preparatory work (bush cutters, harrows and softeners);
- roadbed construction work (scraper, bulldozer, motor grader, water sprinkler and roller);
- construction of the foundation of the road surface (excavator, bulldozer, motor grader and roller);
- the process of laying road surfaces (truck, asphalt machine, roller);
- surface treatment, drawing road lines and installation of road signs (marking machines, drilling tractor, car crane);

The stages of construction of the road structure are shown in Figure 1.

The compaction process is carried out on all layers of the road structure. Depending on the type of work being performed and the characteristics of the soil being used, compaction machines are used. As we know, the purpose of compacting layer soils is to ensure their strength, load-bearing capacity, and prevent subsidence, displacement, and deformation. In this regard, technological processes carried out by compaction machines are important [3]-[6].

Ensuring unquestionable quality indicators requires the research of the interaction processes between the working bodies of the cage and the ground. In this regard, the world's leading scientists, including Akesson F., Beainy F., Darabi M.K., Dongre R., Geske D.M., Huan Q., Kole L.L., Rakowski S., Ryan S., Pellinen T.K., Scherocman J.A., Schwartz C.W., Serafin P.J., West R.C., Witczak, Zubkov A.F., Ivanchenko S.N., Kalujskiy Ya.A., Nosov S.V., Prusov A.Yu., Putka A.I., Repin S.V., Kharkhuta N.Ya., Chabutkin E.K., Shestopalov A.A., Zakharenko A.V., Permyakov V.B., Molokov L.V. Kustarev G.V. Research is being conducted by Uzbek scientists T.K. Khankelov and A.D. Kayumov.

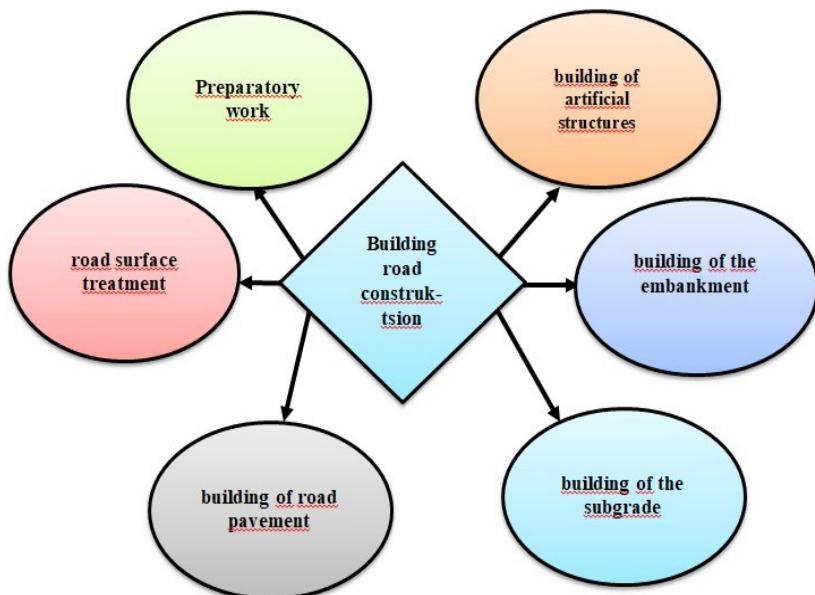
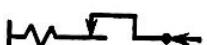
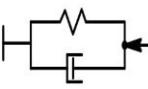
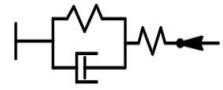
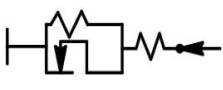
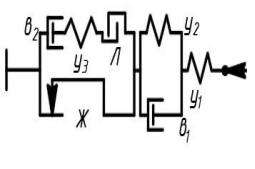


Figure 1. Road structure construction stages

Materials and Methods







In recent years, rheological models have been widely used in studying the physical nature of the interaction between the roller and the external environment, in particular, in studying the compaction process. Through these types of models, the state occurring in each technological process, that is, the mechanical changes in the material under the influence of external forces, are described through rheological model schemes reflecting elastic, plastic, and viscous properties.

In this direction, leading foreign researchers of the world Guiyan Xing, K. Terzaghi, W.A. Lewis, Mooney, Michael A. Robert V. Rinehart, CIS scientists V.I. Balovnev, A.V. Zakharenko, N.N. Ivanov, G.V. Kustarev, Yu.M. Lvovich, V.V. Mikheev, S.V. Nosov, V.B. Permyakov, S.V. Savel'yev, N.Ya. Kharkhuta, and Uzbek scientists A.D., Kayumov, Scientists such as T.K. Hankelov have been paying attention to this issue in their research. The types of rheological models and calculation expressions are presented in the studies [7]-[10]. The types of rheological models are selected depending on the nature and operating conditions of the technological process carried out by earthmoving and road construction machines in their interaction with soils. The environment, appearance, calculation expressions and names of the models modeled using these models are presented in Table 1.

Academia Open

Vol. 10 No. 2 (2025): December
 DOI: 10.21070/acopen.10.2025.13054

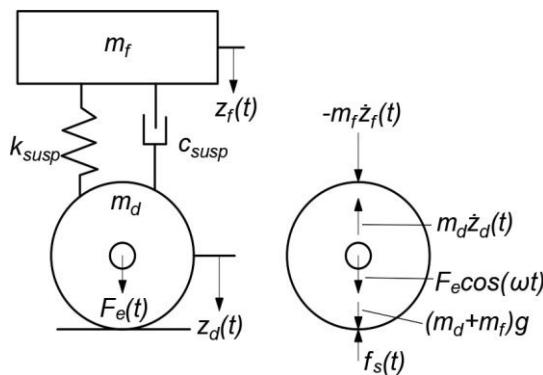
Table 1. The main types of rheological models

Modeled environment	Rheological model	Model name	
		Mechanical form	Mathematical notation
Elastic		$\sigma = \varepsilon \cdot E; \tau = \gamma \cdot G$	Hook
Plastic		$\tau = \tau_{pl};$	Saint-Venant
Shoemaker		$\tau = \eta \frac{d\theta}{dz};$	Newton
Elasticplastic		$\tau = \tau_{pl}; \tau = \gamma \cdot G;$	Prandtl
Elastic plastic:		$\tau = \eta \frac{d\theta}{dz}$	Maxwell
Relaxation stress		$\tau = \eta \frac{d\theta}{dz}; \tau = \gamma \cdot G;$	
With delayed deformation		$\tau = \gamma \cdot G + \eta \frac{d\theta}{dz};$	Foygt
With the displacement event		$\tau = \gamma \cdot G; \frac{d\theta}{dz}$ $\tau = \gamma_1 \cdot G_1 + \eta \frac{d\theta}{dz};$	Kelvin
Elastic-viscous-plastic		$\tau = \gamma \cdot G;$ $\tau = \gamma_1 \cdot G_1 + \tau_{pl};$	Bingham
Elastic viscoplastic relaxation		$\tau = \gamma \cdot G;$ $\tau = \gamma_1 \cdot G_1 + \tau_{pl};$ $\tau = \tau_{pl} + \eta \frac{d\theta}{dz}$	Shvedov
Soil in the process of shear deformation		$\tau = \gamma \cdot G; \frac{d\theta}{dz}$ $\tau = \gamma_1 \cdot G_1 + \eta \frac{d\theta}{dz};$ $\tau = \tau_{pl} + \eta_1 \frac{d\theta}{dz}.$	Combined

The above models are general rheological models, and they come in different versions depending on the types of compaction machines used, the shape and form of the working body, as well as the physical and mechanical properties of the interacting layer soils. Models of this type have been

[ISSN 2714-7444 \(online\)](https://acopen.umsida.ac.id), <https://acopen.umsida.ac.id>, published by [Universitas Muhammadiyah Sidoarjo](https://acopen.umsida.ac.id)

Copyright © Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).


Academia Open

Vol. 10 No. 2 (2025): December

DOI: [10.21070/acopen.10.2025.13054](https://doi.org/10.21070/acopen.10.2025.13054)

cited in research works. In particular, in the research of foreign scientists Michael A. Mooney and Robert V. Rinehart [11], field studies were conducted using a vibrating roller compactor equipped with devices to study the relationship between vibration characteristics and the properties of the lower part of the soil, namely soil porosity. Devices were installed on the roller to control the acceleration of the drum and frame, as well as the force of the eccentric.

It was found that both the acceleration and the phase of rotation of the drum are very sensitive to changes in the base soil. Considering only vertical displacement, the model in Figure 2a includes the masses of the drum and frame, respectively, and the spring and the cover, which represent the rubber vibration-isolating support of the drum and frame. The time-varying force transmitted to the ground can be easily determined using the force balance (Figure 2b).

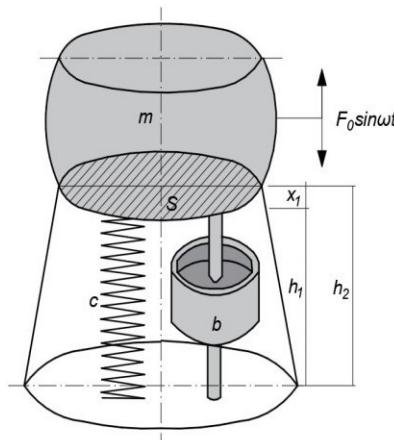


Figure 2. (a)Two-DOF, lumped mass parameter representation of roller compactor; (b) free body diagram of drum atop soil

$$f_s(t) = F_e \cos(\omega t) + (m_d + m_f) \cdot -m_d \cdot \ddot{z}_d - m_f \ddot{z}_f \quad (1)$$

where F_e - vertical force amplitude due to the rotating eccentric $m_e \omega_0^2$; ω_0 - eccentric excitation frequency rad/s; g - acceleration due to gravity; \ddot{z}_d and \ddot{z}_f acceleration of the drum and frame respectively.

In the studies of S.V Savelev and V.V Mikheev, when studying the deformation stress state of the medium in the state of compaction, the interaction of the external load was considered as a conditionally elastic rod, and the contact surface with the compacted medium was taken as a marked dimension S , Figure 3 [12].

Figure 3. Diagram of the interaction of an elastically deformable rod with an external load through the contact surface of the stamp
Based on this model, we write the effect of dynamic force on the deformable elastic viscous medium in the form of a differential equation.

$$m \Delta \ddot{x} + 2b \dot{x} + c x = F_0 \sin \omega t \quad (2)$$

where m - the mass of the soil actively “connected” with the working body of the compaction, kg; Δx - soil deformation during one cycle of loading, m; b - deformable soil viscosity, N/m^2 ; c - elasticity of the deformable “column” environment, N/m ; F_0 - vibration excitation force, N; ω - frequency, s^{-1} ; S -contact area, m^2 .

In turn, the elasticity of the deformable “column” environment is determined by this formula.

$$c = \frac{E \cdot S}{h} \quad (3)$$

where E is the modulus of elasticity of the deformable medium, Pa.

Also, the deformable soil viscosity is determined from this expression:

$$\eta \cdot S$$

$$b = \frac{1}{2 \cdot h}$$

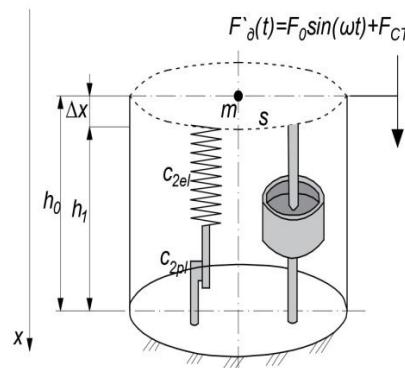
Then expression (1) becomes:

$$m\Delta\ddot{x} + 2\frac{\eta \cdot S}{h}\hat{x} + \frac{E \cdot S}{\sin \omega t} \Delta x = F \quad (5)$$

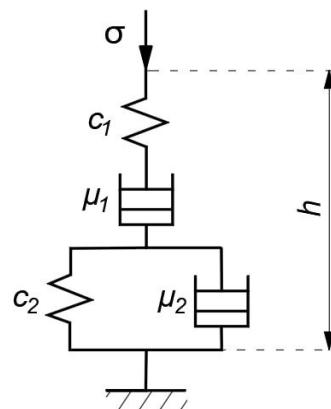
$$2 \cdot h \quad \overline{h} \quad 0$$

If we divide the left and right sides of the equation by the mass, then the following formula is formed:

$$\Delta\ddot{x} + \frac{\eta \cdot S}{m \cdot h} \hat{x} + \frac{E \cdot S}{m \cdot \sin \omega t} \Delta x = \frac{F_0 \sin \omega t}{m} \quad (6)$$


$$m \cdot h \quad m \cdot h \quad m$$

AA. Beloded's research focused on the problems of the mathematical model of the dynamic deformation process of the compressing elastic viscous plastic medium, and Hook, Newton and Saint-Venant elements were selected for this process [13]. Taking into account many assumptions, an elemental column of a dense medium with a definite mass and volume, acting on an external periodic force, was seen (Fig. 4).


We express the influence of the external periodic force of the frequency vibrator on the deformable soil in the form of the differential equation of the movement of the mass of the environment as follows.

$$\rho \cdot V \Delta\ddot{x} + b_2 \hat{x} + c_2 \Delta x = F_0 \sin \omega t + F_{cm} \quad (7)$$

where Δx - deformation of the medium, m: $m = \rho \cdot V$ - mass of the medium, kg, ρ - density of the deforming medium, kg/m³; V - volume of the deforming column of the medium, m³; $F_{cm} = mg$ - weight of the working body, N; c_2 - stiffness of the deforming column of the medium, N/m; b_2 - coefficient of viscous friction of the deforming volume.

Figure 4. Scheme of deformation of a column of elementary elastic plastic viscous deformable medium under the influence of external force
Researcher E.A. Shishkin in his scientific research determined the parameters of the rheological model based on laboratory studies [14]. The model proposed by the scientist shows the elastic (c_1), viscous-elastic (c_2 , μ_2) properties of the material (Fig. 5).

Figure 5. Model of asphalt concrete mixture

The above properties are determined based on the results of laboratory tests on the ductility-recovery of the material. The model in Figure 5 is a special case of the generalized Kelvin model, for which the relationship between stress and deformation is as follows:

$$h = \frac{\sigma}{c_1} + \frac{\sigma}{\mu_1 \cdot \delta_1} + \frac{\sigma}{c_2 + \mu_2 \cdot \delta_1} \quad (8)$$

Academia Open

Vol. 10 No. 2 (2025): December
DOI: [10.21070/acopen.10.2025.13054](https://doi.org/10.21070/acopen.10.2025.13054)

Where h - deformation, m; σ -tension, Pa; c_1, c_2 -unity coefficients, N/m³; μ_1, μ_2 -viscosity coefficients, Ns/m³; δ_1 -linear time differentiation operator. By doing what is shown in expression (6), we get the defining equation for the model shown in Figure 5.

$$\frac{\mu_2}{c_1} \sigma'' + \left(1 + \frac{c_2}{c_1} + \frac{\mu_2}{\mu_1}\right) \sigma' + \frac{c_2}{\mu_1} \sigma = \mu_2 h'' + c_2 h \quad (9)$$

Results and Discussion

Continuing their research in the field of rheological models, the model proposed by them was improved [15]. The state of the interaction between the working body of the compaction machine and the soil is divided into 3 parts. Zone 1 is the elastic, zone 2 is viscous zone, and zone 3 is plastic. The compacted soil layer is also taken into account in the formulas describing the process. The model developed based on the above ideas is presented in Figure 6 in the frame-roller-soil system.

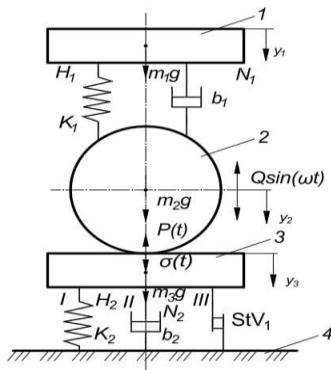


Figure 6. A three-mass rheological model system

here is the loading of frame 1; 2 - rollers; 3 - road base soil; 4 - base; N1, N2 - Newton's models; H1, H2 - Hooke's models; StV - Sen Venan model.

Based on this scheme, the following system of expressions can be given.

$$m_1 \ddot{y}_1 - b_1 (\dot{y}_1 - \dot{y}_2) - k_1 (y_1 - y_2) = m_1 g \quad (10)$$

$$(m_2 + m_3) \ddot{y}_2 + b_2 \dot{y}_2 + b_1 (\dot{y}_2 - \dot{y}_1) + k_2 y_2 + k_1 (y_3 - y_1) = (m_2 + m_1) g + P(t); \quad (11)$$

$$\dot{y}_2 = \dot{y}_3; y_2 = y_3; \text{StV}_1 = 0. \quad (12)$$

where m_1 - load mass (valets frame mass), kg; m_2 - mass of valets transmitting harmonic vibrations from the vibrator, kg; y_1 - amplitude of

coil body vibration generated by the rotation of the valets imbalance shaft, mm; y_2 - valets vibration amplitude, mm; y_3 - displacement created in the soil; b_1 - coefficient of relative viscosity in the combination of valets and frame, $N \cdot s / m$; b_2 - relative viscosity coefficient of soil, $N \cdot s / m$; k_1 - relative resistance coefficients of valets and frame connecting dampers, N/m; k_2 - elasticity resistance coefficient of soil N/m; $P(t)$ - excitation power of the vibrator, N; Ω - angular frequency of rotation of the vibrator shaft, rad/s; t - oscillation time, s; $\sigma(t)$ - the impact reaction of compacted road base soil on valets, N.

If we introduce the following conditions:

$$\dot{y}_1 - \dot{y}_2 = \Delta y_{12}; \quad y_1 - y_2 = \Delta y_{1,2}; \quad y_3 - y_1 = \Delta y_{1,3}; \quad \dot{y}_2 - \dot{y}_1 = -\Delta y_{12} \quad (13)$$

Then expressions (10) and (11) take the following form.

$$m_1 \ddot{y}_1 - b_1 \Delta y_{1,2} - k_1 \Delta y_{1,2} = m_1 g$$

$$(m_2 + m_3) \ddot{y}_2 + b_2 \dot{y}_2 - b_1 \Delta y_{1,2} + k_2 y_2 + k_1 \Delta y_{1,3} = (m_2 + m_1) g + P(t)$$

$$\dot{y}_2 = \dot{y}_3; \quad y_2 = y_3$$

Based on this rheological model, the equations can be expressed in this form:

The system of equations (14) and (15) can be written as follows:

(15)

(14)

(16)

$$M \cdot \ddot{y} + Cy + ky = P(t) \quad (17)$$

(17)

We write the equation (17) in matrix form.

$$M = \begin{vmatrix} m_1 & 0 & 0 \\ 0 & m_1 + m_2 & 0 \\ 0 & 0 & m_2 + m_3 \end{vmatrix}; B = \begin{vmatrix} b_1 & -b_1 & 0 \\ -b_1 & b_1 + b_2 & 0 \\ 0 & 0 & b_2 + b_3 \end{vmatrix}; k = \begin{vmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & 0 \\ 0 & 0 & k_2 + k_3 \end{vmatrix} \quad (18)$$

$$y = \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix}; F(t) = \begin{vmatrix} m_1 g \\ (m_1 + m_2)g + P(t) \\ (m_2 + m_3)g \end{vmatrix} \quad (19)$$

$$y_2 = y_3 \Rightarrow k_1(y_3 - y_1) = k_1(y_2 - y_1) \quad (20)$$

We solve the static part of the equation

$$P(t) = 0 \quad (21)$$

In the static field

$$\dot{y} = 0; \ddot{y} = 0 \quad (22)$$

$$-k_1(y_{1c} - y_{2c}) = m_1 g \Rightarrow y_{1c} = y_{2c} - \frac{m_1 g}{k_1} \quad (23)$$

$$k_2 y_{2c} + k_1(y_{2c} - y_{1c}) = (m_1 + m_2)g \quad (24)$$

Substituting expression (23) into expression (24), we calculate:

$$k_2 y_{2c} + k_1(y_{2c} - (y_{2c} - \frac{m_1 g}{k_1})) = (m_1 + m_2)g \quad (25)$$

If we simplify the equation (25), the following expression is formed:

$$y_{2c} = \frac{m_2 g}{k_2} \quad (26)$$

Expressions (23) and (26) are solutions of equations (10, 11, 12).

Equations (10, 11, 12) can be given in the following form:

$$y_{1c} = \frac{m_2 g}{k_2} - \frac{m_1 g}{k_1} \quad (27)$$

To calculate the dynamic part, we introduce the following relative coordinates:

$$y_1(t) = y_{1c} + z_{1(t)}, y_2(t) = y_{2c} + z_{2(t)} \quad (28)$$

Since gravity forces are calculated in the static solution, they do not participate in the following equation.

$$m_1 \cdot \ddot{z}_1 - b_1 \cdot (\dot{z}_1 - \dot{z}_2) - k_1(z_1 - z_2) = m_1 g; \quad (29)$$

$$(m_2 + m_3) \cdot \ddot{z}_2 + b_2 \cdot \dot{z}_2 + b_1(\dot{z}_2 - \dot{z}_1) + k_2 \cdot z_2 + k_1(z_3 - z_1) = P(t); \quad (30)$$

$$M \cdot \ddot{z} + B \dot{z} + kz = P(t), \quad (31)$$

$$\begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_1 + m_2 & 0 \\ 0 & 0 & m_2 + m_3 \end{pmatrix} \begin{pmatrix} b_1 & -b_1 & 0 \\ -b_1 & b_1 + b_2 & 0 \\ 0 & 0 & b_2 + b_3 \end{pmatrix} \begin{pmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & 0 \\ 0 & 0 & k_2 + k_3 \end{pmatrix}$$

ISSN 2714-7444 (online), <https://acopen.umsida.ac.id>, published by Universitas Muhammadiyah Sidoarjo

Copyright © Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

$$M = \begin{vmatrix} m & m \\ 0 & 2 \end{vmatrix}, B = \begin{vmatrix} -b \\ 1 & 1 & 2 \end{vmatrix}; k = \begin{vmatrix} -k \\ 1 & 1 & 2 \end{vmatrix},$$

$$y = \begin{pmatrix} z_1 \\ z \end{pmatrix}, F(t) = \begin{pmatrix} 0 \\ P(t) \end{pmatrix} \quad (33)$$

The solution of the differential equation (31) consists of the sum of 2 solutions.

$$z(t) = z_u + z_x \quad (34)$$

Where z_u - the general solution of the homogeneous part; z_x - (31) is a particular solution of the equation.

$$M \cdot \ddot{z}_u + B \dot{z}_u + kz_u = 0 \quad (35)$$

$$z_u(t) = C_1 \cos(\omega_1 t + \varphi_1) + C_2 \sin(\omega_2 t + \varphi_2) \quad (36)$$

The specific solution of the equation (31) is selected depending on the form of power transmission.

For example, if it is in the form, then we look for a specific solution of equation (31) in the following form:

$$z_x = A_1 \sin(\omega_3 t) + B_1 \cos(\omega_3 t) \quad (37)$$

$$\dot{z}_x = A_1 \omega_3 \cos \omega_3 t + B_1 \omega_3 \sin \omega_3 t \quad (38)$$

$$\ddot{z}_x = A \omega^2 \sin t + B \omega^2 \cos t \quad (39)$$

$$x \quad \begin{matrix} 1 & 3 \end{matrix} \quad \begin{matrix} 1 & 3 \end{matrix} \quad M \cdot \ddot{z}_x + B \dot{z}_x + kz_x = P_0 \cdot \sin \omega_3 t \quad (40)$$

$$A (k - M \omega^2) - B \omega_3 B_1 = P \quad (41)$$

$$A_1 (k - B \omega_3) - M \omega_3^2 B_1 = 0 \Rightarrow B_1 = \frac{k - B \omega_3}{M \omega_3^2} A_1 \quad (42)$$

$$A (k - M \omega^2) - \frac{k - B \omega_3^3}{M \omega_3^2} B \omega_3 = P \quad (43)$$

$$A ((k - M \omega^2) \cdot M \omega_3 - B (k - B \omega_3)) = P \cdot M \omega_3 \quad (44)$$

If we introduce the following definition

$$(k - M \omega_3^2) \cdot M \omega_3 - B (k - B \omega_3) = C \quad (45)$$

$$A = \frac{P \cdot M \omega_3}{C} \quad (45)$$

$$B = \frac{k - B \omega_3}{C \omega_3} \cdot P M \quad (46)$$

$$z(t) = z_u + z_c = C \cos(\omega_3 t + \varphi_3) + C \sin(\omega_3 t + \varphi_3) + A_1 \sin(\omega_3 t) + B_1 \cos(\omega_3 t) \quad (47)$$

$$y(t) = y_c + z(t) \quad (48)$$

$$y(t) = \frac{m_2 g}{k_2} - \frac{m_1 g}{k_1} + C_1 \cos(\omega_1 t + \varphi_1) + \quad (49)$$

$$C_1 \sin(\omega_2 t + \varphi_2) + A_1 \sin(\omega_3 t) + B_1 \cos(\omega_3 t)$$

This general solution (49) helps to predict the stability of a mechanical system, its susceptibility to resonance, amplitude increases under load, and damping characteristics. In the future, this formula will serve as a basic tool in the following scientific and practical areas:

1. selection of optimal design parameters to reduce vibrations;
2. determination of operating frequencies to avoid resonance;
3. estimation of damping coefficients in the design of active or passive shock absorbers;
4. prediction of dangerous vibrations in machines and units;
5. more accurate construction of modeling and numerical simulations of mechanical systems.

Thus, this formula provides the necessary scientific and methodological basis for a deep analysis of the dynamic characteristics of the system, optimization of the design, and prediction of future vibration problems.

Conclusion and Recommendations

The above differential formulas are analytically difficult to calculate. Therefore, software tools are used to obtain the resulting values. Ongoing scientific research shows that rheological models characterizing the interaction between the compactor and the soil during compaction of road structure soils fully reflect the state of deformation in them. In turn, the soils, mixtures and construction materials used in each layer of soil are distinguished by their own characteristics and properties.

In particular, the main soil parameters for road base construction are optimal moisture content and maximum density, which are closely related to the amount of water in the soil, in particular, the wetting process. In asphalt mixtures, viscosity is one of the main characteristics, which directly affects the quality of bitumen and mineral powder, and the technology of preparation of the mixture in the final state is of great importance

References

1. Khankelov T. K., Komilov S. I., Rustamov K. J., and Khudaykulov R. M., "Study of the Work Processes of a Set of Machines Used in the Construction of Highways," Scientific and Practical Journal of Architecture, Construction and Design, March 2024, pp. 299–303.
2. Khudaykulov R. M., Komilov S. I., and Khankelov T. Q., "The Role of Rollers Used in the Compaction of Soils Used in the Foundation of Highways," Scientific and Technical Journal of Mechanics and Technology, vol. 1, 2023, pp. 205–212.
3. Komilov S. I., "Justification of the Rollers Used in Compaction of Road Structure Soils," Proceedings of the II International Scientific Conference Young Scientific Researcher, Tashkent, April 27–28, 2023, pp. 142–144.
4. Komilov S. I., "Methods of Compaction of Roadbed Soils with Rollers," Proceedings of the International Scientific and Practical Conference Integration of Education, Science and Production: Problems and Solutions, Namangan, October 16–17, 2024, pp. 327–329.
5. Komilov S. I., "Methodological Foundations of Compaction of Road Structures with Rollers," JzPI Bulletin Scientific and Technical Journal, vol. 1, 2025, pp. 59–66.
6. White D. J., Vennapusa P. K. R., and Gieselman H. H., "Field Assessment and Specification Review for Roller-Integrated Compaction Monitoring Technologies," Advances in Civil Engineering, vol. 2011, Article 783836, 2011. doi: 10.1155/2011/783836.
7. Khankelov T. Q., Modeling of Road Construction Machines and Planning of Experiments, textbook. Tashkent: Transport Publishing House, 2023, pp. 91–97.
8. Hankelov T. Q., Rustamov K. J., and Komilov S. I., "Application of Rheological Models in the Study of Compensation of Road Structure Soils with Rollers," Acta of Turin Polytechnic University in Tashkent, no. 30, 2023, pp. 57–60.
9. Kondrashov N. A. and Shestopalov A. A., "Using the Deformation Modulus in a Rheological Model of Asphalt Concrete Mix Compaction in Road Pavement Construction," Journal of Civil Engineering, no. 7, 2014, pp. 55–65. doi: 10.5862/MCE.51.7.
10. Xu T., Zhou Z., Yan R., Zhang Z., Zhu L., Chen C., Xu F., and Liu T., "Real-Time Monitoring Method for Layered Compaction Quality of Loess Subgrade Based on Hydraulic Compactor Reinforcement," Sensors, vol. 20, no. 15, 2020, p. 4288. doi: 10.3390/s20154288.
11. Mooney M. A. and Rinehart R. V., "Field Monitoring of Roller Vibration During Compaction of Subgrade Soil," Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, no. 3, 2007, pp. 257–265. doi: 10.1061/(ASCE)1090-0241(2007)133:3(257).
12. Saveliev S. V. and Mikheev V. V., "Studies of the Stress-Strain State of an Elastic-Viscous Medium Under Vibration Loading," SibADI Bulletin, vol. 3, no. 25, 2012, pp. 83–87.
13. Saveliev S. V., Mikheev V. V., and Beloded A. S., "Mathematical Model of the Process of Dynamic Deformation of a Compacted Elastic-Viscous Plastic Medium," SibADI Bulletin, vol. 3, no. 49, 2016, pp. 99–105.
14. Shishkin E. A., "Determination of Rheological Model Parameters Based on Laboratory Research Data," Scientific and Technical Bulletin of Bryansk State University, no. 2, 2024, pp. 133–139. doi: 10.22281/2413-9920-2024-10-02-133-139.
15. Tyuremnov I. S. and Shorokhov D. A., "Modeling the Interaction of a Vibratory Roller with Compacted Soil," SibADI Bulletin, vol. 21, no. 2, 2024, pp. 202–216.