
Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Academia Open

By Universitas Muhammadiyah Sidoarjo

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Table Of Contents

Journal Cover	. 1
Author[s] Statement	. 3
Editorial Team	
Article information	
Check this article update (crossmark)	
Check this article impact	
Cite this article	
Title page	. 6
Article Title	6
Author information	6
Abstract	
Article content	

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Originality Statement

The author[s] declare that this article is their own work and to the best of their knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the published of any other published materials, except where due acknowledgement is made in the article. Any contribution made to the research by others, with whom author[s] have work, is explicitly acknowledged in the article.

Conflict of Interest Statement

The author[s] declare that this article was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright Statement

Copyright Author(s). This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

EDITORIAL TEAM

Editor in Chief

Mochammad Tanzil Multazam, Universitas Muhammadiyah Sidoarjo, Indonesia

Managing Editor

Bobur Sobirov, Samarkand Institute of Economics and Service, Uzbekistan

Editors

Fika Megawati, Universitas Muhammadiyah Sidoarjo, Indonesia

Mahardika Darmawan Kusuma Wardana, Universitas Muhammadiyah Sidoarjo, Indonesia

Wiwit Wahyu Wijayanti, Universitas Muhammadiyah Sidoarjo, Indonesia

Farkhod Abdurakhmonov, Silk Road International Tourism University, Uzbekistan

Dr. Hindarto, Universitas Muhammadiyah Sidoarjo, Indonesia

Evi Rinata, Universitas Muhammadiyah Sidoarjo, Indonesia

M Faisal Amir, Universitas Muhammadiyah Sidoarjo, Indonesia

Dr. Hana Catur Wahyuni, Universitas Muhammadiyah Sidoarjo, Indonesia

Complete list of editorial team (link)

Complete list of indexing services for this journal (link)

How to submit to this journal (link)

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Article information

Check this article update (crossmark)

Check this article impact (*)

Save this article to Mendeley

(*) Time for indexing process is various, depends on indexing database platform

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Association Between Claudin-5 And Angulin-1 In Alzheimer's Disease

Nawal Abdullah Murtadha, nawalabbdullah@uokirkuk.edu.iq,(1)

Department of Chemistry, College of Science, University of Kirkuk, Kirkuk, Iraq

Nader Chaparzadeh, nchapar@azaruniv.ac.ir,(2)

Department of Biology, Azarbaijan Shahid Madani University, Tabriz, Iran

(1) Corresponding author

Abstract

General Background: Alzheimer's disease is a progressive neurodegenerative disorder in which cognitive decline is closely linked to blood-brain barrier dysfunction. Specific Background: Tightjunction proteins such as Claudin-5 and Angulin-1 play key roles in maintaining barrier integrity, yet their involvement in Alzheimer's pathology remains insufficiently clarified, and evidence on associated micronutrient alterations is still limited. Knowledge Gap: Despite emerging data suggesting barrier disruption and B-vitamin deficiencies in Alzheimer's disease, the combined diagnostic relevance of Claudin-5, Angulin-1, and vitamins B9 and B12 has not been systematically examined. Aims: This study investigates the relationship between Claudin-5 and Angulin-1 in Alzheimer's disease and evaluates differences in serum vitamin B9 and B12 levels between affected individuals and healthy controls. Results: Serum analyses revealed significantly reduced Angulin-1, Claudin-5, vitamin B9, and vitamin B12 levels in Alzheimer's patients, alongside marked alterations in lipid profiles. ROC analysis demonstrated exceptionally high diagnostic performance for all measured biomarkers. Novelty: This work provides integrated biochemical evidence linking tight-junction protein depletion with B-vitamin deficiencies in Alzheimer's disease, suggesting a coordinated disruption of vascular and metabolic pathways. Implications: The identified biomarkers show strong potential for non-invasive diagnostic applications and may guide the development of therapeutic strategies aimed at restoring barrier integrity and micronutrient balance.

Highlight:

- Claudin-5 and Angulin-1 show significant reductions in Alzheimer's patients, reflecting impaired tight-junction function in the blood-brain barrier.
- Vitamin B9 and B12 levels are markedly lower in Alzheimer's patients than in healthy controls, indicating an important metabolic alteration.
- All biomarkers demonstrate high diagnostic performance, with strong sensitivity and specificity based on ROC analysis.

Keywords: Claudin-5, Angulin-1, Alzheimer's disease, Vitamin B9, Vitamin B12.

Published date: 2025-11-20

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Introduction

The increasing brain atrophy and ensuing cognitive deterioration that are linked to AD are reflected in its clinical manifestations. Clinical symptoms, however, usually follow a number of molecular diseases in the brain, such as the buildup of amyloid protein, tau protein phosphorylation, and disruption of the blood-brain barrier (BBB) [1]. Measuring the buildup of tau or amyloid protein deposits in the brain or subsequent leakage into the blood or cerebrospinal fluid (CSF) is the foundation for diagnosing AD. However, lumbar puncture, an invasive operation, is usually required to obtain CSF [2]. Positron emission tomography (PET), which uses tau and amyloid probes to identify protein deposits in the brain, is an alternate technique. Despite being minimally invasive, PET imaging is not commonly employed due to its high cost [3]. Because blood-based diagnostics are inexpensive and minimally intrusive, they have recently drawn interest as alternative diagnostic possibilities. People with symptoms of AD or MCI are tested for amyloid as well as phosphorylation tau proteins in their blood. The 27-member protein family known as claudins includes claudin-5 (CLDN-5), a crucial TJ-sealing component in the blood-brain barrier [4]. Multiple sclerosis patients have $higher \ blood\ CLDN-5\ levels], and in the mouse \ model\ of\ inflammatory\ encephalomyelitis, loss\ of\ CLDN-5\ was\ linked\ to\ BBB\ disruption\ [5].$ These results led us to believe that, in comparison to their cognitively normal counterparts, people with MCI and AD may have different blood CLDN-5 levels. In order to explore this concept, we first created an exceptionally sensitive single-molecule array (Simoa) test that is more sensitive than traditional immunoassays using a monoclonal antibody (mAb) that the detects outside loops of human CLDN-5 [6]. One of the proteins in the BBB (blood-brain barrier) that helps to keep it intact is called angulin-1 [7]. BBB disruption is a recognized problem in Alzheimer's dementia (AD), and it may entail changes in the expression of angulin-1. and activity, although the exact relationship is still being investigated. Research suggests that angulin-1 dysfunction in the BBB could impact AD progression by potentially altering BBB permeability, which in turn can affect the clearance of amyloid-beta plaques and contribute to neuroinflammation [8].

Age is the biggest risk factor for Alzheimer's disease (AD), a neurodegenerative illness that has been declared a global epidemic. Patients and study participants in memory clinics and studies are regularly evaluated for vitamin B12 (cobalamin), but not for other important vitamins for the central nervous system (CNS), including B6 (pyridoxine), B1 (thiamine), as well as B9 [9]. Deficits in vitamins B6 and B12 are linked to dementia and moderate cognitive impairment. Pyridoxine by itself has a number of benefits that can improve both quantitative and qualitative memories [10]. For instance, pyridoxine plays a role in both neuronal stimulation and inhibition since it is necessary for the production of neurotransmitters. Despite the fact that vitamins B1 and B9 have been linked to cognitive function and brain health, they are not frequently evaluated in memory sufferers. Cognitive impairments and encephalopathy are linked to thiamine (B1) deficiency, potentially as a result of decreased brain glucose metabolism.6. Vitamin D deficiency is common in geriatric memory clinic patients, and low vitamin D levels have been found to positively connect with cognitive test scores [11].

Materials and Methods

A case-control study was performed at Kirkuk Teaching Hospitals/ Neurology Unit in Kirkuk City-Iraq from November 2024 to April 2025. The total number of Alzheimer's patients is (fifty). Twenty-five of them were males, while twenty-five were females. Their ages ranged from 45 to 75 years. The present study contained a control group of twenty-five subjects who were healthy.

Exclusion criteria

Patients with chronic kidney disease, parkinson's disease, stroke, cancer, uncontrolled diabetes mellitus and autoimmune disorders were excluded from the current study.

Collecting and managing samples

A volume of roughly 5 milliliters of venous blood was drawn from fasting patients and control subjects. Every sample was immediately put into a gel tube to coagulate for half an hour at room temperature. The tubes were then centrifuged for fifteen minutes at 4000 rpm. Following the initial centrifugation, the clot was extracted and centrifuged again for ten minutes at 4000 rpm. An automated micropipette was then used to aspirate the obtained sera, which were then transferred individually to two Eppendorf microtubes and kept at -20°C for a subsequent serological analysis. Using enzyme-linked immunosorbent assay (ELISA) kits, serum levels of Claudin-5 and Angulin-1 (ELK Biotechnology / U.S.A.) were determined in accordance with the manufacturer's instructions. Utilizing COBAS Techniques, vitamin B12 and vitamin B9 (Roche, Germany) were measured while the lipid profile was measured by routine kits (Biolabo SA, France) using colorimetric spectrophotometer .

Statistical Analyses

One-way ANOVA was utilized to analyze the results. The mean ± the standard deviation of the mean (SD) is used to display all results. A value was considered statistically significant if its p-value was less than 0.05.

Results

The study participants' demographic details and family history are shown in Table 1. The gender distribution of the groups did not differ significantly (p = 0.7), with 15 (30%) of the Alzheimer's population being male. Alzheimer's is more prevalent in women. According to 35 (70%) of the respondents, women who fit the prerequisites for Alzheimer's condition are more likely to not be given a clinical diagnosis.

Table 1. Descriptive Characteristics of Study Participants

Characteristics	Total (N = 75)	Alzheimer's (N = 50)	Healthy Control (N = 25)	p- value
Age (years)				0.06
Mean ± SD	66.41 ± 5.71	68.92 ± 3.41	55.25 ± 1.97	
Gender, n (%)				0.70
Male	35 (47%)	15 (30%)	10 (40%)	

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

Female	40 (53%)	35 (70%)	15 (60%)	
Duration of disease				
(years) Mean ± SD	4 ± 0.67			

$(P \le 0.05)$ significant

Table 2 compares the levels of biomarkers in Alzheimer's and healthy controls. The Alzheimer's group in the current investigation had a lower mean \pm SD of Angulin-1 (ng/mL) than the healthy control group; this difference was highly significant in statistical terms. Additionally, there was a significant statistical ($P \le 0.05$) difference between the Alzheimer's group and the healthy control group in the mean \pm SD of Claudin-5 (ng/mL). As well as shows the vitamins B9, B12 levels of people with Alzheimer's disease (AD) and controls who were healthy.

The Alzheimer's disease (AD) group in the current study had a significant low ($P \le 0.05$) levels of vitamin B9 and B12 in AD patients than the healthy control group.

Table 2. Comparisons of Angulin-1, Cingulin Levels, Vitamins B9 and B12 concentrations in AD compared with the control

Biomarker	Total (N = 75)	Alzheimer's (N = 50)	Healthy Control (N = 25)	p- value
Angulin-1 (ng/mL)				
Mean ± SD				
	6.87± 1.21	5.82 ± 1.11	8.79 ± 0.98	0.001
Claudin-5 (pg/mL)				
Mean ± SD				
	44.50 ± 6.1	33.18 ± 2.8	66.19±3.5	0.010
VitB9 (ng/ml) Mean ± SD	7.16 ± 0.32	5.21 ± 0.52	9.96 ± 0.91	0.010
VitB12 (pg/ml) Mean ± SD	377.12 ± 14.42	185.63 ± 23.32	331.62 ± 25.52	0.003

$(P \le 0.05)$ significant

Table 3. illustrates the substantial difference ($P \le 0.05$) in serum lipid profile concentrations between those suffering from Alzheimer's Disease and the control group. There was a significant increase ($P \le 0.05$) in the levels of LDL, VLDL, TG, in patients with Alzheimer's Disease compared to controls, but the mean of HDL concentration was significantly decreased ($P \le 0.05$) in these patients in comparison with healthy individuals. There was a non-significant increase ($P \ge 0.05$) in cholesterol concentration in patients with Alzheimer's Disease when compared to healthy controls.

Table 3: A comparison of the lipid profile between Healthy Control and Alzheimer's Disease (AD)

Parameters	Alzheimer's Disease(AD) (mean±SD) (n= 50)	Healthy controls (mean ± SD) (n= 25)	p- value
Cholesterol (mg/dL)	168.02 ± 4.77	169.45 ± 8.75	0.066
Triglycerides (mg/dL)	189.47 ± 5.41	141.34 ± 7.63	0.001
HDL (mg/dL)	36.76 ± 3.93	57.56 ± 6.19	0.001
LDL (mg/dL)	138 ± 3.12	86.23 ± 6.27	0.000
VLDL (mg/dL)	44.76 ± 2.57	22.12 ± 1.91	0.002

$(P \le 0.05) = significant$

The ability of biomarkers to diagnose and predict ASD using receiver operating characteristic (ROC) analysis

Each study variable's diagnostic performance as a possible biomarker for ASD was assessed using receiver operating characteristic (ROC) curve analysis. Table 4 presents the results with illustrations. The sensitivity, specificity, and area under the curve (AUC) are among the performance

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

indicators.

Table 4: Receiver Operating Characteristic (ROC) Analysis Results

Parameters	AUC	95% CI b	Criterion	Sensitivity	Specificity
Angulin-1 (ng/ml)L)	0.998	0.969 to 1.00	<133.2	100.00	100.00
Claudin-5 (pg/ml)	1.000	0.959 to 1.00	>28.6	100.00	100.00
VitB9 (ng/ml)	0.996	0.951 to 1.00	≤4.3	95.16	100.00
VitB12 (pg/ml)	1.000	0.959 to 1.00	>291.9	100.00	100.00
Cholesterol (mg/dL)	0.998	0.961 to 1.00	≤4.2	95.16	100.00
Triglycerides (mg/dL)	1.000	0.959 to 1.00	>28.6	100.00	100.00
HDL (mg/dL)	0.996	0.951 to 1.00	≤4.3	95.16	100.00
LDL (mg/dL)	0.998	0.961 to 1.00	≤4.2	95.16	100.00
VLDL (mg/dL)	1.000	0.959 to 1.00	>291.9	100.00	100.00

AUC: Area Under the Curve; CI: Confidence Interval, the 95% confidence intervals were calculated using DeLong's method, Criterion values represent the optimal cutoff points that maximize both sensitivity and specificity. The analysis included 30 control subjects and 61 intestinal disorder patients. P-values for all AUC measurements were <0.0001, indicating statistical significance.

Discussion

The idea that microvascular deterioration is linked to the pathogenesis of AD is supported by a number of data [12]. In the present work, we examined relationships between AD and serum levels of CLDN-5, a crucial TJ-sealing protein in the BBB's microvascular endothelial cells. According to Feng et al., plasma Angulin-1 levels were greater in control group and lower in AD patients, while serum CLDN-5 concentrations were lower in AD patients compared to cognitively healthy persons. Leukocyte invasion and astrocyte activation occur in conjunction with the BBB breakdown linked to CNS disorders [13]. According to Yang et al., the matrix metalloproteinases (MMPs) released by these invasive leukocytes have been demonstrated to cause the CLDN-5 (ng/mL) levels to associate with the levels of Angulin-1. Plasma CLDN-5 and Angulin-1 concentration Spearman rank-correlation analyses are displayed for both AD patients and cognitively normal controls. Normal controls and AD patients' plasma CLDN-1 and Angulin-1 concentrations are displayed [14].

Multiple B vitamin deficiencies, particularly vitamin B12 and folate (B9), have been researched for their connection to cognitive decline and neurological issues, though the direct link to Alzheimer's Disease (AD) is still being studied [15]. Low levels of B vitamins can worsen AD processes, and a B12 deficiency, sometimes linked to autoimmune issues like pernicious anemia, can cause cognitive and neurological symptoms that may precede anemia. Symptoms of B12 deficiency can include megaloblastic anemia, gastrointestinal issues, and neurological and psychiatric symptoms [16]. These results align with prior findings by Qian et al., (2022), who reported multiple B vitamin deficiencies, among with AD in a case-control study of 86 children with AD and 57 neurotypical peers aged 52-68 years [17]. The study highlighted that child with AD often have restricted dietary patterns, which may contribute to insufficient intake of essential nutrients like B12, B9, Further biochemical insight was provided by Kumar et al, who employed advanced UHPLC-mass spectrometry (O-exactive analyzer) techniques to assess urine samples from AD. Their findings demonstrated simultaneous deficiencies of vitamins B9, and B12, proposing that intestinal dysbiosis may underlie poor absorption of these nutrients. Moreover, genetic mutations could further compromise B vitamin metabolism in this population [18]. Vitamin B12, in particular, plays a crucial role in neurological health. Its involvement in maintaining gut microbiota homeostasis has drawn attention, especially given the frequent presence of dysbiosis in individuals with ASD. Such imbalances can lead to increased intestinal permeability, chronic low-grade inflammation, and alterations in the gut-brain axis-all of which may exacerbate or contribute to ASD symptoms. In addition, B12 is vital for the $metabolism\ of\ neurotransmitters\ like\ seroton in\ and\ dopamine, which\ are\ critical\ for\ mood\ regulation,\ cognitive\ function,\ and\ behavioral\ responses$ [19]. In Alzheimer's Disease (AD) patients, there are significant dysregulations [20], often showing lower total cholesterol (TC) and LDL-C, especially in later stages. Previous studies also indicate that AD patients, particularly women, may have lower unsaturated lipids and higher saturated lipids compared to healthy individuals [21,22]. However, other research points to elevated TC and LDL-C levels being linked to an increased risk of developing AD, suggesting a complex and age-dependent relationship [23,24].

Conclusion

Link to Alzheimer's Disease (AD), Angulin-1, a component of tricellular tight junctions, may may aid in preserving the blood-brain barrier's integrity by preventing the production of tight junction proteins like Claudin-5.

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12958

References

- 1. S. Gauthier, C. Webster, S. Servaes, J. Morais, and P. Rosa-Neto, World Alzheimer Report 2022: Life After Diagnosis: Navigating Treatment, Care and Support. London, UK: Alzheimer's Disease International, 2022.
- 2. S. Hameed et al., "Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and Its Clinical Implication in the Management of Alzheimer's Disease," J. Alzheimer's Dis. Rep., vol. 4, pp. 21–37, 2020.
- 3. J. Cummings et al., "Alzheimer's Disease Drug Development Pipeline: 2022," Alzheimer's Dement., vol. 8, p. e12295, 2022.
- 4. S. Tsukita, H. Tanaka, and A. Tamura, "The Claudins: From Tight Junctions to Biological Systems," Trends Biochem. Sci., vol. 44, pp. 141–152, 2019.
- 5. T. Nitta et al., "Size-Selective Loosening of the Blood-Brain Barrier in Claudin-5-Deficient Mice," J. Cell Biol., vol. 161, pp. 653-660, 2003.
- 6. Y. Hashimoto et al., "Claudin-5-Binders Enhance Permeation of Solutes Across the Blood-Brain Barrier in a Mammalian Model," J. Pharmacol. Exp. Ther., vol. 363, pp. 275–283, 2017.
- 7. D. Ferguson et al., "Angulin-1/LSR Inhibition Transiently Disrupts the Blood-Tumor Barrier to Enhance Doxil Permeability and Impair Malignant Glioma Progression," bioRxiv, pp. 2025-07, 2025.
- 8. D. Vignone et al., "Modelling the Human Blood–Brain Barrier in Huntington Disease," Int. J. Mol. Sci., vol. 23, no. 14, p. 7813, 2022.
- 9. A. Kalani et al., "A High Methionine, Low Folate and Vitamin B6/B12 Containing Diet Can Be Associated With Memory Loss by Epigenetic Silencing of Netrin-1," Neural Regen. Res., vol. 14, no. 7, p. 1247, 2019.
- 10. L.-T. Sheng et al., "Association Between Dietary Intakes of B Vitamins in Midlife and Cognitive Impairment in Late-Life: The Singapore Chinese Health Study," J. Gerontol. A Biol. Sci. Med. Sci., vol. 75, no. 6, pp. 1222–1227, 2019.
- 11. R. J. Przybelski and N. C. Binkley, "Is Vitamin D Important for Preserving Cognition? A Positive Correlation of Serum 25-Hydroxyvitamin D Concentration With Cognitive Function," Arch. Biochem. Biophys., vol. 460, no. 2, pp. 202–205, 2007.
- 12. B. V. Zlokovic, "Neurovascular Pathways to Neurodegeneration in Alzheimer's Disease and Other Disorders," Nat. Rev. Neurosci., vol. 12, pp. 723–738, 2011.
- 13. S. Feng et al., "Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood–Brain Barrier by Disrupting Tight Junction Proteins," PLoS ONE, vol. 6, p. e20599, 2011.
- 14. Y. Yang et al., "Matrix Metalloproteinase-Mediated Disruption of Tight Junction Proteins in Cerebral Vessels Is Reversed by Synthetic Matrix Metalloproteinase Inhibitor in Focal Ischemia in Rat," J. Cereb. Blood Flow Metab., vol. 27, pp. 697–709, 2007.
- 15. A. Han et al., "Exploring Neuropsychiatric Manifestations of Vitamin B Complex Deficiencies," Front. Psychiatry, vol. 16, p. 1569826, 2025.
- 16. A. Ahmed et al., "The Role of Vitamins in Dementia Prevention and Cognitive Health: A Comprehensive Review," J. Alzheimer's Dis., p. 13872877251379700, 2025.
- 17. T. Qian et al., "Association Between Blood Biochemical Factors Contributing to Cognitive Decline and B Vitamins in Patients With Alzheimer's Disease," Front. Nutr., vol. 9, p. 823573, 2022.
- 18. R. Kumar et al., "Role of Vitamins in Neurodegenerative Diseases: A Review," CNS Neurol. Disord.—Drug Targets, vol. 21, no. 9, pp. 766–773, 2022.
- 19. A. Jahan-Mihan et al., "The Role of Water-Soluble Vitamins and Vitamin D in Prevention and Treatment of Depression and Seasonal Affective Disorder in Adults," Nutrients, vol. 16, no. 12, p. 1902, 2024.
- 20. I. G. Zainal, A. A. Safaa, and K. O. Wajeeh, "Comparison of Glyco Proteins Levels With Some Biochemical Parameters in Iraqi Patients With Chronic Liver Diseases," Innov. J. Med. Health Sci., vol. 2, no. 5, 2012.
- 21. S. M. H. Al-Obaidi, S. S. Ahmed, and A. H. A. Al-Obaidi, "Evaluation of Serum Chemerin Level in Non-Diabetic, Hemodialyzed Patients," Tikrit J. Pharm. Sci., vol. 12, no. 2, pp. 27–35, 2017.
- 22. N. Noori and N. Murtadha, "Uncontrolled Type 2 Diabetes Mellitus Modulated Plasma Levels of Lipid Catabolic Proteins," Georgian Med. News., no. 352–353, pp. 229–233, 2024.
- 23. S. F. Shaker, Y. K. Khaleel, and S. D. Khalaf, "Immune Markers, Biochemical Parameters and Genotoxicity in Children Infected With Diabetes Mellitus-Type," Innov. J. Med. Health Sci., vol. 12, no. 2, pp. 49–53, 2025.
- 24. M. I. Habeeb and N. A. Murtadha, "Assessment of Bone Metabolism Markers in Diabetic Patients: Influence of Osteoporosis, Age, and Gender," Bull. Stomatol. Maxillofac. Surg., 2025, pp. 21–8–204, doi: 10.58240/1829006X...