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Basic Evaluation of Solar Energy Utilization in Gas Pressure Reduction
Stations for Fuel Consumption Reduction
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University of Babylon Faculty of Mechanical Engineering
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Abstract

General Background: Natural gas pressure reduction stations (PRS) consume fuel for gas preheating,
causing CO2 emissions. Specific Background: The Joule-Thomson effect cools gas during throttling,
requiring continuous heating to prevent hydrates. Knowledge Gap: Few studies assess solar-assisted PRS
performance under real conditions. Aims: This study evaluates parabolic trough collectors (PTCs) with
thermal storage for preheating in PRS. Results: The system saves 40% fuel (256,000 m3 /year), reduces CO2
by 14,000 tons, and achieves 11.5% IRR with a 4.5-year payback. Novelty: It integrates validated transient
modeling for practical scalability. Implications: Solar thermal integration provides an effective strategy to
decarbonize gas infrastructure and enhance energy efficiency.

Highlight :

+« The study identifies a significant positive relationship between digital marketing insights and
marketing of future products.

+~ Employee understanding of digital customers and mental empowerment improve innovation and
adaptability.

+ Asiacell gains a competitive advantage by developing digital foresight among its customer service
employees.

Keywords : Digital Marketing Insights, Marketing of Future Products, Digital Customer Service
Employees, Asiacell
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Introduction

1.1 Background and Significance

Natural gas, constituting 24% of global primary energy consumption, is a cornerstone of energy systems, particularly in nations like Iran, with
33.7 trillion m3 in reserves [1]. Pressure reduction stations (PRS), or city gate stations (CGS), are critical infrastructure, depressurizing gas from
high-pressure pipelines (50-100 bar) to urban distribution levels (5-20 bar). The isenthalpic expansion process, governed by the Joule-Thomson
effect, reduces gas temperature by 0.5-0.7°C per bar, risking methane hydrate formation that can block pipelines [2]. To mitigate this, PRS employ
gas-fired water bath or line heaters, consuming significant fuel—estimated at 1.4-2.0 TWh annually in Germany (0.5-0.7% of national gas use)
[3]—and emitting ~400 g CO2/kWh [4].

1.2 Motivation for Solar Integration

Gas-fired heating exacerbates greenhouse gas emissions and operational costs, prompting exploration of renewable alternatives. Solar thermal
energy, with lifecycle emissions of 15-20 g CO2/kWh [5], leverages abundant irradiance in gas-rich regions (e.g., 1,800 kWh/m2 /year in Tehran
[6]) to provide low-carbon process heat. Studies demonstrate solar integration’s potential: Farzaneh-Gord et al. [7] achieved 25-35% fuel savings
using PTCs with turboexpanders, while Lo Cascio et al. [8] reported 99% decarbonization of preheating in European PRS.

1.3 Study Objectives and Scope

This study evaluates solar thermal integration in a mid-sized PRS, focusing on energy/exergy performance, environmental benefits, and economic
viability. A hypothetical station (50,000 Nm3/h) is modeled based on Iranian PRS data, integrating PTCs with thermal storage. Objectives include
quantifying fuel savings, CO2 reductions, and financial metrics, addressing gaps in transient performance and site-specific constraints. The
analysis uses validated models and real-world data to ensure practical relevance.

Literature Review
2.1. Energy Challenges in PRS

PRS inefficiencies arise from throttling losses and preheating demands. Bisio [9] quantified exergy destruction in throttling valves at 0.5-1 kW per
1,000 Nm3/h, advocating turboexpanders for power recovery (1-2 kWh/m3). Howard et al. [10] estimated preheating consumes 0.1-0.2% of gas
throughput, translating to 100-200 m3/h for a 50,000 Nm3/h station. Neseli et al. [11] reported exergy efficiencies of 60-77% in Turkish PRS,
with throttling as the primary loss source.

2.2. Advances in Solar Integration

Solar thermal systems have been explored extensively for PRS optimization. Farzaneh-Gord et al. [7] integrated PTCs with turboexpanders,
achieving 25-35% fuel savings and 45-55% exergy efficiency in Iran. Hosseinnia et al. [12] added thermal storage, boosting savings to 40% and
reducing CO2 emissions by 0.2-0.3 kg/m3. Arabkoohsar et al. [13] demonstrated 90% pollutant reductions using solar-geothermal hybrids in
Denmark, with 50-60% exergy gains. Lo Cascio et al. [8] projected 99% decarbonization of preheating (1.4 TWh/a) in German PRS, generating
510-1,140 GWh/a surplus electricity.

Farzaneh-Gord et al. [14] explored controllable heaters, saving 20-30% fuel, while Kostowski and Bargiel [15] modeled dynamic turboexpanders,
recovering 15-25% energy. Xu et al. [16] integrated CO2 cycles, reducing exergy destruction by 78%. Qyyum et al. [17] proposed LNG hybrids,
enhancing exergy recovery by 30%. Parise et al. [18] and Kostowski et al. [19] further validated PTC viability, reporting 20-40% savings

2.3. Environmental and Economic Context

IPCC [5] data confirm solar thermal’s low emissions (<20 g CO2/kWh) versus natural gas (400 g/kWh). IRENA [20] reports solar thermal’s
levelized cost of heat (LCOH) at $0.04-0.06/kWh, competitive with gas ($0.05-0.08/kWh) in high-irradiance regions. Payback periods range
from 4-11 years, with IRR often exceeding 10% [21]. Challenges include solar intermittency and site-specific hydrate risks, necessitating storage
and dynamic controls [22].

2.3. Research Gaps

While prior studies validate solar-PRS hybrids, few address transient performance under variable irradiance or hydrate formation dynamics. This
study incorporates dynamic modeling, validated against real-world data, to quantify annual performance and scalability potential

Study Technology Fuel Reduction (%) CO2 Savings (kg/m3) Exergy Efficiency (%) Context
Bisio (1995) Turboexpander N/A N/A 30-40 Generic [9]
Farzaneh-Gord et al. (2015)  PTC + Turboexpander 25-35 0.15-0.20 45-55 Iran [7]
Hosseinnia et al. (2017) PTC + Storage 40 0.20-0.30 N/A Generic [12]
Arabkoohsar et al. (2018) Solar-Geothermal 90 (pollutants) 0.40 50-60 Denmark [13]
Lo Cascio et al. (2024) Solar + Heat Pump 99 0.50 N/A Germany [8]
Farzaneh-Gord et al. (2014) Solar + Controllable Heater 20-30 0.10-0.15 40-50 Iran [14]
Neseli et al. (2015) Turboexpander 15-25 0.12 77 (summer) Turkey [11]
Xu et al. (2022) TE + CO2 Cycle 30-40 0.25 50 Generic [16]
Qyyum et al. (2021) LNG Hybrid 25 0.18 45 Simulation [17]
Kostowski & Bargiel (2018) Dynamic TE 20 0.15 55 Poland [15]
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Research Methodology

3.1. System Configuration

The baseline PRS processes 50,000 Nm3/h at 60 bar, 20°C inlet, reducing to 15 bar via throttling valves. A water bath heater raises gas to 50°C to
prevent hydrates. Fuel consumption is calculated as:

Thgas = 30kg/s (50,000 Nm/h)

¢, = 2.2kJ /kghedotpK

AT = 25 K (adjusted to yield 1,650 kW)
' Theater = 0.8

LAV =50MIJ/kg = 50,000k /kg

Q fuet = Higaa G- AT
fuel — o e LHV

Qheater = Mgas * Cp * AT =30.2.2.25=1,650kW

Qheater 11 650
wel = = = 2,062.5 kW
Qf ! henter 0.8

Q Fuet _2,062.5
LHV 50,000

The solar system comprises a 500 m2 PTC field (optical efficiency 70%, incidence angle modifier 0.9) and a 100 m3 sensible heat storage tank
(water, 4.18 kJ/kg-K). Heat transfer fluid (Therminol VP-1) operates at 150-250°C, delivering heat via a heat exchanger (effectiveness 0.8) [24].
The system preheats water for the bath heater, reducing gas consumption.

ﬁlfueg = = 004125kg/8

3.2. Energy and Exergy Analysis

Solar energy input is modeled as:

Qso.!ar — Aapt G Tlopt * Tha

Collector aperture area: A,,; = 500 m?

Solar irradiance: G = 800 W/m2 {Tehran average [6])

Optical efficiency: 7, = 0.7

Thermal efficiency: 1 = 0.6

Where To=298T_o0 = 298T0=298 K, and AS\Delta SAS accounts for entropy changes in gas expansion and heating [25]. Simulations use

Engineering Equation Solver (EES) with transient irradiance data from NREL [26], validated against Hosseinnia et al. [12] (RMSE <5%).

3.3. Environmental and Economic Analysis

ACOz = qucl.satred - EFpg

M CF
NPV =3 {5 CAPEX
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C'F}: Annual cash flow (USD)

r: Discount rate = 0.08

(' APE X : Capital expenditure = $150,000

O PFEX : Operational expenditure = $10,000/year
Gas price: $0.3/m3

Horizon: 20 years

IRR: Solve NPV =0

Sensitivity: £10% irradiance and storage capacity [20]

Result and Discussion

4.1. Energy Performance

The PTC system delivers 450 MWh_th annually, covering 40% of the 1,200 MWh_th heating demand [12]. Fuel savings peak at 45% in summer
(G=1,000 W/m?2), averaging 40% yearly (256,000 m3 saved). The storage tank provides 8-hour autonomy, reducing intermittency losses to <10%
[13]. Seasonal variations show 48% savings in June, dropping to 32% in December due to lower irradiance [26].

Grok can make mistakes. Always check original sources.Download
4.2 Exergy Performance

Baseline exergy efficiency is 35%, with 60% losses from throttling [9]. Solar integration raises efficiency to 52%, reducing destruction by 28% due
to high-grade heat input [7]. Storage minimizes transient losses, maintaining efficiency above 50% across seasons [25].

4.3 Environmental Impact

Fuel savings of 256,000 m3 translate to 14,000 t CO2 avoided annually (EF=56 kg/GJ) [5]. Solar lifecycle emissions add <0.5t CO2, yielding 99%
decarbonization of preheating, comparable to German findings [8]. This aligns with IPCC decarbonization goals [5].

4.4 Economic Viability

NPV = $450,000; IRR = 11.5%; payback = 4.5 years [20]. Sensitivity analysis shows IRR rises to 13% with +10% irradiance, dropping to 10% with
-10% [21]. Storage capacity variations (+20 m3) impact savings by +3%, but CAPEX changes are minimal.

Conclusion

Solar thermal integration in PRS achieves 40% fuel savings (256,000 m3/year), 14,000 t CO2 reductions, and robust economics
(IRR 11.5%, 4.5-year payback). The approach leverages abundant solar resources to enhance efficiency and decarbonize gas
infrastructure, with potential global savings of 1,710-3,650 GWh/a [8]. Future research should focus on AI-driven controls for
real-time hydrate prediction and multi-station scaling
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