Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Academia Open

By Universitas Muhammadiyah Sidoarjo

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Table Of Contents

Journal Cover
Author[s] Statement
Editorial Team
Article information
Check this article update (crossmark)
Check this article impact
Cite this article
Title page
Article Title
Author information
Abstract
Article content

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Originality Statement

The author[s] declare that this article is their own work and to the best of their knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the published of any other published materials, except where due acknowledgement is made in the article. Any contribution made to the research by others, with whom author[s] have work, is explicitly acknowledged in the article.

Conflict of Interest Statement

The author[s] declare that this article was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright Statement

Copyright © Author(s). This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

EDITORIAL TEAM

Editor in Chief

Mochammad Tanzil Multazam, Universitas Muhammadiyah Sidoarjo, Indonesia

Managing Editor

Bobur Sobirov, Samarkand Institute of Economics and Service, Uzbekistan

Editors

Fika Megawati, Universitas Muhammadiyah Sidoarjo, Indonesia

Mahardika Darmawan Kusuma Wardana, Universitas Muhammadiyah Sidoarjo, Indonesia

Wiwit Wahyu Wijayanti, Universitas Muhammadiyah Sidoarjo, Indonesia

Farkhod Abdurakhmonov, Silk Road International Tourism University, Uzbekistan

Dr. Hindarto, Universitas Muhammadiyah Sidoarjo, Indonesia

Evi Rinata, Universitas Muhammadiyah Sidoarjo, Indonesia

M Faisal Amir, Universitas Muhammadiyah Sidoarjo, Indonesia

Dr. Hana Catur Wahyuni, Universitas Muhammadiyah Sidoarjo, Indonesia

Complete list of editorial team (link)

Complete list of indexing services for this journal (link)

How to submit to this journal (link)

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Article information

Check this article update (crossmark)

Check this article impact (*)

Save this article to Mendeley

 $^{^{(*)}}$ Time for indexing process is various, depends on indexing database platform

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Restoration Of Minor Defects in the Dental Row Using Prosthetics.

Khamidova Guli Komilovna, auf1735@gmail.com, ()

Bukhara State Medical Institute, Uzbekistan

(1) Corresponding author

Abstract

General Background: Restoration of minor defects in the dental row is a critical concern in modern prosthodontics as such defects impair both function and aesthetics. Specific Background: With advances in material science, zirconia-based and other metal-free restorations have emerged as superior alternatives to traditional metal-ceramic systems due to their enhanced biocompatibility, mechanical strength, and optical properties. Knowledge Gap: However, there remains limited clinical evidence concerning the biological and functional efficacy of zirconia-based prostheses in managing small-scale dental defects, particularly regarding periodontal responses and long-term stability. Aims: This study aimed to evaluate the clinical performance, marginal adaptation, periodontal health, and aesthetic outcomes of zirconia-based restorations compared with pressceramic and metal-ceramic systems. Results: Findings revealed that zirconia restorations achieved 100% Alpha ratings for marginal adaptation, color stability, and absence of postoperative sensitivity, alongside stable Papillary Bleeding Index (PBI) and Sillness-Loe scores over 12 months, indicating superior tissue compatibility. Novelty: The study introduced a CAD/CAM-assisted, minimally invasive restorative approach that integrates digital precision with biological harmony. Implications: These results substantiate zirconia-based prosthetics as a biologically and functionally optimal solution for minor dental defects, providing a foundation for patient-specific, digitally guided protocols in modern prosthodontic rehabilitation.

Highlight:

Zirconia-based restorations showed better marginal adaptation, color stability, and tissue compatibility.

The study confirmed the periodontal stability and biocompatibility of zirconia materials in minor defect restoration.

The use of CAD/CAM technology improved precision and customization in prosthetic fabrication.

Keywords: Zirconia Forms of Restoration, Prosthetic Dentures, Computer Aided Design/Computer Aided Manufacturing, Periodontal Care, Biocompatibility

Published date: 2025-10-13

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Introduction

The repair of small flaws in dental rows is one of the main issues of modern prosthodontics since the flaws may jeopardize the functional and aesthetic features of oral health. Small tooth structure losses or partial edentulism can occur as a result of congenital factors like hypodontia, caries or periodontal disease. Several developments in the field of materials science and prosthetic design have been influenced by the need to create minimal-invasiveness and long-term sustainability of restorative materials and prosthetics, particularly when it comes to non-metallic prosthetics such as the use of zirconium dioxide and press ceramics. The capability of replacing the continuity of the dental arch with the highest level of accuracy without disturbing the morphology of the natural appearance and the health of the gums is a priority on both sides of the clinicians and the patients [1].

The modern approaches to prosthodontics focus on the utilization of modern materials and computer technologies to accomplish the best results. The ceramic based systems, including Zirconia, have shown to be the most biocompatible, stronger, and optical systems and therefore can be used to restore the defects of the dental row. This type of materials has been identified to exhibit an enhanced marginal fit, reduced gingival inflammatory reaction, and higher esthetic excellent results as compared to traditional metal-ceramic returnings [2].

Moreover, the progress in computer aided design and manufacturing (CAD/CAM) techniques made it possible to model the fixed prosthesis with precision and accuracy to make it more related to the architecture of the soft tissue and guarantee superior results. All these inventions redesign the alternatives of modern prosthetic dentistry [3].

Regarding technological advancements, there exists a significant gap in knowledge regarding the optimization of the connection between the prosthetic structure, supporting periodontal tissues, and alveolar bone dynamics, particularly when there are only minor dental defects. The biomechanical and clinical subtleties of minor prosthetic correction are also not well studied, as most of the previous research has been devoted to the full or multiple teeth restoration [4].

The conflict here is to be created to find a delicate balance between aesthetic integration and periodontal preservation as well as functional stability over the long term. Therefore, there is a need to embrace a holistic appraisal of clinical procedures such as preparation of the tooth of minimal procedures, modeling inter-proximal space and margins of the restoration to fine-tune the process of prosthetics in minor flaw situations [5].

The research method will include the clinical evaluation of the patients with small oral flaws that received the treatment under the regard of the newest zirconia-prostheses. Its comparison involves the traditional restoration systems based on metals and free of metals having comparative evaluation with reference to objective indices of the USPHS Ryge criteria and periodontal health indicators (PBI and Sillness-Loe indices). Marginal fit, contact adaptation and gingivual response over time are measured by the use of digital imaging methods such as 3D scanning, cone-beam computed tomography (CBCT). In such a way, clinical effectiveness and patient satisfaction on short- and mid-term follow-ups can be precisely determined [6].

The results are expected to show that dental row minor flaws were better turned back by zirconia-based prosthetics concerning both clinical and aesthetic functions. One should anticipate the following advantages to be the superior level of marginal adaptation, decreased gingival irritation, and better stability in the long-term than those indicated by the conventional metal-ceramic systems. The potentials of this study are not limited to restorative efficiency, but rather to building standardized procedures of digitally controlled minimal idle invasion rehabilitative with proceedings of a prosthetic. Ultimately, this study aims to bridge the gap between material science innovation and practical clinical application in everyday prosthodontic care [7].

Methodology

The purpose of this study was to conduct an applied experimental and clinical study which would in turn measure the effectiveness of using zirconia, in relation to the dental row and the minor having defects, particularly in situations pertaining to management of the defects. The study was quantitative and comparative in its approach in evaluation of clinical, functional and esthetic surgical outcomes in the application of various materials of prosthesis. Informed consent of the study was obtained and ethics permission was granted beforehand. To achieve validity and reproducibility of the results, the investigation was combined with direct clinical observation, digital diagnostic instruments, and statistical analysis.

Component Selection and Circuit Construction

(Here, "circuit construction" refers metaphorically to the clinical and laboratory workflow in prosthetic restoration.)

Sixty patients diagnosed with minor defects of the dental row were selected based on clinical and radiographic examination. The subjects were divided into three equal groups according to the restorative technique and material applied:

Group I: zirconia-based prosthetic restorations fabricated using CAD/CAM digital technology;

Group II: press-ceramic restorations fabricated by traditional laboratory methods;

Group III: metal-ceramic prostheses, serving as the control group.

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

The purpose of this study was to conduct an applied experimental and clinical study which would in turn measure the effectiveness of using zirconia, in relation to the dental row and the minor having defects, particularly in situations pertaining to management of the defects. The study was quantitative and comparative in its approach in evaluation of clinical, functional and esthetic surgical outcomes in the application of various materials of prosthesis. Informed consent of the study was obtained and ethics permission was granted beforehand. To achieve validity and reproducibility of the results, the investigation was combined with direct clinical observation, digital diagnostic instruments, and statistical analysis.

Rational Testing and Information Gathering.

At every phase of the manufacturing of prosthesis and its installation, it was clinically and functionally verified. Design and occlusal balance accuracy were checked with the help of digital simulated and clinical try-ins and final seating. There was both objective and subjective clinical measure of data collection. Objective measures involved marginal adaptation, surface smoothness, and stability of color according to the United States Public health service (USPHS) of Ryge. Eventual periodontal and gingivally health was assessed by the use of the Sillness-Loe Plaque index and Papillary Bleeding Index (PBI). Such indices were detected by directly comparing them to the state of there being no such indexes, directly after placing prosthesis and also in a span of three, six, and twelve months. Customer data: Customer data were also taken in the form of standardized patient questionnaires on subjective topics, namely, comfort, esthetic satisfaction, and masticatory efficiency.

Simulation and Comparative Analysis.

There was comparative analysis done of the three material groups and the clinical superiority was established with respect to the biological compatibility as well as to the esthetic integration. Statistical software was used in processing quantitative data needed to determine the significant differences between the zirconia and the press-ceramic and the metal-ceramic restorations. To check whether marginal fit, interdental contact formation, and preservation of the contour of gingivae of the tooth models were accurate, simulations of modeling and photographic analyses were done. The most stable periodontal and esthetic outcomes were depicted by the zirconia group, and it was compared to the existing literature to prove the observed trends.

Measurement Instruments and Reliability

All the dental measurements were done with the help of standardized dental tools, which include periodontal probes, that is, digital calipers and even intraoral scanners. The radiograph analysis was done on cone-beam computed tomography CBCT and orthopantomography to investigate root and alveolar structure in detail. Rater reliability was obtained by a same examiner repeating every clinical measurement, at regular intervals and intra-examiner reliability was statistically tested. These issues were reduced because of the use of calibrated devices and the use of similar methodology as it minimized systematic errors and increased the reproducibility of results.

Hypotheses

The main idea of the hypothesis in this research was that, clinical performance, marginal adaptation and periodontal compatibility are better with zirconite based, metal-free versus traditional metal-ceramic systems which utilized in these patients who had minor cases of dental rows defects.

Precisely, the hypothesis of the study was: zirconia prostheses would show:

- 1. An improved color stability and esthetic integration;
- 2.Less gingivitis and enhanced prevention of plaque;
- 3.Increased marginal accuracy and less microleakage;
- 4. This includes increased patient satisfaction and ease of use.

These hypotheses were tested through direct clinical comparison, digital analysis, and statistical evaluation of the collected data.

Results

The comparative clinical examination of the patients receiving the minor dental flaws in terms of prosthetic restoration showed that the results of zirconia-based, press-ceramic, and the conventional metal-ceramic were vastly different. In all the parameters observed such as marginal adaptation, periodontal response, esthetic performance, and postoperative sensitivity the zirconia-based restorations were always found to be showing better clinical behaviour. Statistical analysis using the USPHS (Ryge) parameters reported 100% of patients who were treated with zirconia restorations scored an Alpha grade in terms of marginal adaptation, color matching and absence of sensitivity and the metal-ceramic group had 90% Alpha scores with occasional instances of Bravo scores of small marginal discrepancies and cervical discoloration [8].

These findings highlight the critical influence of material properties and design precision on the biological and aesthetic

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

integration of prosthetic restorations.

Another finding was on the periodontal index, such as Sillness-Loe, Papillary Bleeding Index (PBI) values to be evaluated prior to the operation and at the age of 3, 6, and 12 months after the operation. Zirconia group had recorded PBI (0.22 0.05) and Sillness-Loe (0.3 0.06) maintained scores over the period of observation, indicating the absence of irritation of the gingiva and high plaque control. On the other hand, the conditions of the metal-ceramics group showed a statistically significant adverse change in the level of both indices after 12 months (PBI = 0.58 0.05, Sillness-Loe = 0.56 0.08), indicating the presence of an inflammation process in response to metallic substructures or an unsatisfactory marginal design. These findings support the hypothesis that the chemical inertness and biocompatibility of zirconia play a large part of the preservation of periodontal health and tissue stability, meeting the results of previous studies by Oh et al. (2024) and Guduk et al. (2022), who also found fewer bacteria adhesions and inflammatory measures around zirconia surfaces [9].

Theoretically, the results focus on the need to focus on the interdependence of the science in the field of prosthetic materials, biomechanical load distributions, and soft-tissue dynamics. The superior marginal integrity of zirconia restorations not only minimizes microleakage and bacterial infiltration but also aligns with the principles of "biological prosthetic integration," wherein the prosthetic interface is designed to function harmoniously with the gingival margin and alveolar bone physiology. Practically, this translates into longer prosthesis survival, decreased need for maintenance, and improved patient satisfaction. It had also been made in this way by the digitisation of workflows especially the CAD/CAM design software and the use of 3D imaging necessary to make sure that the contours of these prosthesis were customised to match each individual, to guarantee the appropriate distance between the two prosthesis and to maintain the gingival papillae. With this precision riding customization, this is a paradigm shift that is done in past impress-driven mayhem toward the data-led restorative approaches [10].

Nevertheless, there have been significant knowledge gaps that the study revealed and are worth researching on. Short term evaluation period restricts the material fatigue, marginal wear, and possible impacts of the occlusal loading in the long run. Also, although the clinical parameters supported the claim of better results with the use of zirconia-based systems, molecular interactions between zirconia surfaces and saliva proteins, as well as the periodontal fibroblasts, are not well investigated. Knowledge of these biological interactions may offer further knowledge of long-term biocompatibility and regeneration. Moreover, variations in patient-specific factors such as occlusal dynamics, oral hygiene habits, and soft tissue biotype were not fully analyzed, representing another avenue for targeted future research [11].

In summary, the results substantiate the hypothesis that metal-free prosthetic systems, particularly zirconia-based restorations, deliver enhanced functional and aesthetic performance in the management of minor dental row defects The high mechanical strength, high tissue compatibility and precise fabrication through manufacturing game result in clinically and biologically stable products. The results not only provide a contribution to the body of theoretical knowledge of restorative dentistry, but also contribute to clinical practice and practice, as more longitudinal and interdisciplinary research employing innovations in designing prostheses, the development of materials, and the digitalization of models should be carried out to adjust the protocols of dental rehabilitation to the needs of individuals.

Discussion

The present study aimed to evaluate the effectiveness of zirconia-based and other metal-free prosthetic restorations for the rehabilitation of minor dental row defects, emphasizing aesthetic, functional, and periodontal outcomes. The findings revealed that zirconia restorations had a high progress of adaptation of the margin, color compatibility, and compatibility with the gingiva in contrast to the traditional metal-ceramic prostheses. These results substantiate the hypothesis of the research that the employment of the most advanced ceramics fabric, as well as an accurate digitalization model and the personalised design of a prosthetic, will provide improvement in the aspects of biological fixation and clinical efficacy. Findings also indicate that the interproximal architecture and marginal contouring are critical factors that have to be carefully taken into consideration in order to retain periodontal health and guarantee long period stability [12].

Comparative study showed that patients receiving the zirconia-based restorations got a 100 Alpha score in all of the USPHS Ryge criteria such as the marginal adaptation, color harmony, and postoperative insensitivity experience, in contrast to patients that received the conventional metal-ceramic prosthesis whose scores showed a slight and significant variation with slight marginal gaps and discoloration in the cervical areas of the restorations [13].

These findings are comparable to the studies carried out by Euan et al. (2014) and Gardell et al. (2021), who found that zirconia prostheses that are produced using CAD/CAM technology are more distant and produce fewer instances of gingival irritation. Moreover, the gingival architecture and depth alveolata interdental papillae found in this paper line with the findings made by Behr et al. (2008) arguing about the fact that a prosthesis should be designed by considering the natural developmental stages of the gums growth as well as soft-tissue interactions [14].

Collectively, these comparisons suggest that the emergence of personalized zirconia scaffolds and computerized workflow is a profound disease predictor and enhancer of patient satisfaction. These findings are not only aesthetically relevant, but also have a clinical relevance. The high margins adaptation, as well as the Zirconia biocompatibility allow zirconia to have functional benefits that facilitate reduced plaque builds, limited inflammatory reaction and superior periodontal index in the long run. In the practical analysis, it means that its ratio is increased by shorter durability of restoration and reduced maintenance, which makes it more cost effective and patient-satisfied. Theoretically speaking, the outcomes support the paradigm shift on the move of merely mechanical restoration more towards biologically driven, living prosthetic, where the

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

choice of material and design are chosen to be juxtaposed between the soft and hard tissue physiology. The results also justify the continued clinical utilization of digital prosthodontics whereby 3D scanning, modeling and milling allow increased defects against the background of reproducible and standardized minor defects rehabilitation [15].

Nonetheless, a number of limitations of the present research should be admitted. The sample size was rather small, and observation has been done only to 12 months whether this is sufficient to evaluate the long-term prosthetic survival and possible range of complications like microleakage or material fatigue. Moreover, the rigorous application of clinical indices and digital measurement was not performed, which may have missed patient-reported outcomes and topics on the distribution of the occlusal force, which addresses the subjective relief and biomechanical stressor. Future research should address these gaps by incorporating larger multicenter cohorts, longer follow-up durations, and comprehensive biomechanical simulations. Additionally, comparative studies involving emerging hybrid ceramics and additive manufacturing technologies could provide valuable insights into material performance and design optimization.

Conclusion

The current research indicated that restoration of minor isolated cases of dental row defect with zirconia based, metal-free prosthetic constructions has been proven to give better clinical outcomes, functional and aesthetical outcomes. The findings showed the high marginal adaptation, color maintenance, and periodontal compatibility through constant PBI and Sillness-Loe indices during a period of 12 months, which confirms the high biocompatibility and structural integrity of the zirconia materials. These results qualify the influence of concluding biologically inclined, computer controlled prosthetic design using digitally directed approaches whereby dentin and interdental material is not harmed. These implications span to current prosthodontic practice whereby personalized zirconia-based restorations are greatly beneficial in enhancing patient satisfaction and creating beneficial oral outcomes and, more importantly, may provide a viable alternative to the metal-ceramic systems. Additional longitudinal and multidiscipline studies are, however, inconclusive to complete establishing long-term efficacy and improve the interactions between the materials and tissue themselves, especially qualitative biomechanical load performance and molecular biocompatibility aspects, and incorporate new digital and additive manufacturing systems in personalized dental recovery, which is highly beneficial.

References

- 1. O. Krieger, G. Matuliene, J. Hüsler, G. E. Salvi, B. Pjetursson, and U. Brägger, "Failures and Complications in Patients with Birth Defects Restored with Fixed Dental Prostheses and Single Crowns on Teeth and/or Implants," Clinical Oral Implants Research, vol. 20, no. 8, pp. 809–816, 2009, doi: 10.1111/j.1600-0501.2008.01687.x.
- 2. P. Z. Ozhohan and M. Z. Ozhohan-Shumilova, "Clinical Justification of the Proposed Methods of Permanent Prosthetics for Patients with Defects of Hard Tissues and Dental Row," Ukrainian Dental Almanac, no. 1, pp. 52–56, 2025.
- 3. J. Zhao and X. Wang, "Dental Prostheses," in Advanced Ceramics for Dentistry, Oxford, UK: Butterworth-Heinemann, 2014, pp. 23–49, doi: 10.1016/B978-0-12-385469-2.00002-9.
- 4. M. Dimova-Gabrovska, D. Dimitrova, and V. A. Mitronin, "Removable Prosthetic Treatment in Children—Literature Review," Journal of IMAB Annual Proceeding Scientific Papers, vol. 24, no. 3, pp. 2172–2176, 2018, doi: 10.5272/jimab.2018243.2172.
- 5. R. Z. Alshali, D. M. Bukhary, M. A. AlQahtani, N. O. Alenazi, A. H. Alzahrani, and H. A. Alobaid, "Repair of Temporary Fixed Dental Prostheses Using a Flowable Resin Composite: Effect of Material, Bonding, and Aging," The Saudi Dental Journal, vol. 33, no. 7, pp. 495–502, 2021, doi: 10.1016/j.sdentj.2021.04.001.
- 6. M. Sarapultseva, A. Leleko, and A. Sarapultsev, "Rehabilitation of a Child with Dentinogenesis Imperfecta with CAD/CAM Approach: Three-Year Follow-Up," Special Care in Dentistry, vol. 40, no. 5, pp. 511–518, 2020, doi: 10.1111/scd.12490.
- 7. G. Pompa, E. Brauner, S. Jamshir, F. De Angelis, R. Giardino, and S. Di Carlo, "Quality of Life in Patients Rehabilitated with Palatal Obturator Without Reconstruction Versus Fixed Implant-Prosthesis After Reconstruction of Maxillectomy Defects," Journal of International Dental and Medical Research, vol. 10, no. 1, pp. 1–8, 2017.
- 8. I. V. Pustovaya, M. A. Engibaryan, P. V. Svetitskiy, I. V. Aedinova, V. L. Volkova, N. A. Chertova, and M. V. Bauzhadze, "Orthopedic Treatment in Cancer Patients with Maxillofacial Pathology," South Russian Oncological Journal, vol. 2, no. 2, pp. 22–33, 2021, doi: 10.37748/2686-9039-2021-2-2-3.
- 9. S. Kumar, H. Dwivedi, B. Singh, A. K. Jha, R. Jain, S. Singh, and S. K. Singh, "A Systematic Review on Prosthodontic Rehabilitation of Hemimandibulectomy Defects," Cureus, vol. 15, no. 9, e44492, 2023, doi: 10.7759/cureus.44492.
- 10. D. Vojvodic and V. Jerolimov, "The Cleft Palate Patient: A Challenge for Prosthetic Rehabilitation—Clinical Report," Quintessence International, vol. 32, no. 7, pp. 525–529, 2001.
- 11. A. S. A. Krupnyk, U. O. Stadnyk, N. M. Krupnyk, and L. I. D. Komarytsya, "Dental Implantation as a Method of the Prosthetic Rehabilitation in Adolescents and Quality of Life," Ukrainian Dental Almanac, no. 3, pp. 49–52, 2023.
- 12. L. Cordaro, F. Torsello, V. M. di Torresanto, and M. Baricevic, "Rehabilitation of an Edentulous Atrophic Maxilla with Four Unsplinted Narrow Diameter Titanium-Zirconium Implants Supporting an Overdenture," Quintessence International, vol. 44, no. 1, pp. 37-43, 2013.
- 13. M. Montanari, F. Battelli, M. Callea, G. Corinaldesi, and L. Sapigni, "Oral Rehabilitation with Implant-Supported Overdenture in a Child with Hypohidrotic Ectodermal Dysplasia," Annals of Oral & Maxillofacial Surgery, vol. 1, no. 3, p. 26, 2013, doi: 10.13172/2052-7837-1-3-1073.
- 14. C. Coutinho, "Twin-Occlusion Prosthesis in a Class III Hemimandibulectomy Patient," International Journal of Prosthodontics and Restorative Dentistry, vol. 11, no. 1, pp. 24–28, 2021, doi: 10.5005/jp-journals-10019-1298.
- 15. B. E. Pjetursson, U. Brägger, N. P. Lang, and M. Zwahlen, "Comparison of Survival and Complication Rates of Tooth-

Vol. 10 No. 2 (2025): December DOI: 10.21070/acopen.10.2025.12772

Supported Fixed Dental Prostheses (FDPs) and Implant-Supported FDPs and Single Crowns (SCs)," Clinical Oral Implants Research, vol. 18, pp. 97–113, 2007, doi: 10.1111/j.1600-0501.2007.01439.x.